Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Engineering Science and Materials

High Strength Steel Fiber Reinforced Flow-Able Or Scc Concrete With Variable Fiber By Volume Fractions For Thin Plate And Shell Structures, Abebe Berhe Dec 2014

High Strength Steel Fiber Reinforced Flow-Able Or Scc Concrete With Variable Fiber By Volume Fractions For Thin Plate And Shell Structures, Abebe Berhe

UNLV Theses, Dissertations, Professional Papers, and Capstones

The purpose of this study is to incorporate discrete, short, mechanically deformed, small diameter steel fibers into high strength concrete with f'c > 70 MPa (10 ksi) in an attempt to reduce and partially eliminate the need for steel rebar in concrete construction. By introducing steel fibers to high strength concrete mixture, the overall tensile, compressive and shear strength of the mixture can be improved immensely thus, replacing portions or major parts of the longitudinal, temperature and shrinkage reinforcements. The reduction or elimination of longitudinal and transverse reinforcements in the construction of structural or non-structural members can result in savings in …


Primary Creep In Astm A325 Bolts Under Simulated Fire Loading, Mohammad Matar Dec 2014

Primary Creep In Astm A325 Bolts Under Simulated Fire Loading, Mohammad Matar

Theses and Dissertations

At room temperature, small creep effects are present on steel structures. This is not the case at fire condition where the temperature is much higher than room temperature; in this case creep can be significant, and should be taken into consideration. Since fire hazard can happen in any building, creep effect must be taken into consideration when designing a building. Creep strain behaves as a function of time, temperature and stress. As the temperature increases, the creep strain increases. Similarly, the longer the temperature at a given stress on the structure, the more the creep strain present.

The smallest component …


Experimental And Analytical Characterization Of Regenerated/Nano Cellulose Composites, Issam I A Qamhia May 2014

Experimental And Analytical Characterization Of Regenerated/Nano Cellulose Composites, Issam I A Qamhia

Theses and Dissertations

Fiber-reinforced composite materials are increasingly used for structural and engineering purposes. In particular, composites reinforced with natural fiber systems are becoming more and more popular due to their biodegradability and abundance; added to that other properties such as transparency, dimensional stability and good mechanical behavior. However, major issues remain to properly understand their behavior and enable their widespread use.

In this thesis, the mechanical behavior of cellulose fiber/epoxy composites is investigated. The natural fiber systems studied fall into three categories: unidirectional regenerated cellulose fibers, triaxially braided quasi-isotropic regenerated cellulose fibers and micro-fibrillated cellulose in the form of nanocellulose scaffolds. Different …


Detailed Finite Element Analysis And Preliminary Study Of The Effects Of Friction And Fastener Pre-Tension On The Mechanical Behavior Of Fastened Built-Up Members, Francisco Javier Bonachera Martin Apr 2014

Detailed Finite Element Analysis And Preliminary Study Of The Effects Of Friction And Fastener Pre-Tension On The Mechanical Behavior Of Fastened Built-Up Members, Francisco Javier Bonachera Martin

Open Access Theses

The characterization of fatigue resistance is one of the main concerns in structural engineering, a concern that is particularly important in the evaluation of existing bridge members designed or erected before the development of fatigue design provisions. The ability of a structural member to develop alternate load paths after the failure of a component is known as member-level or internal redundancy. In fastened built-up members, these alternate load paths are affected by the combination of fastener pre-tension and friction between the structural member components in contact. In this study, a finite element methodology to model and analyze riveted and bolted …