Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Engineering Science and Materials

Development Of The End-Effector Of A Cable-Driven Parallel Manipulator For Automated Crop Sensing, Iman Salafian Aug 2017

Development Of The End-Effector Of A Cable-Driven Parallel Manipulator For Automated Crop Sensing, Iman Salafian

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

A four cable-driven parallel manipulator (4CDPM), consisting of sophisticated spectrometers and imagers, is under development for use in acquiring phenotypic and environmental data over an acre-sized maize field. This thesis presents the design, controls, and testing of two sub-systems in a 4CDPM: a Center of Mass Balance System (CMBS) and a Drop-Down System (DDS).

One of the factors that influences stability is the center of mass (COM) position of the end effector. An offset in COM can cause a pendulum effect or an undesired tilt angle. A center of mass balancing system is presented in this thesis to minimize the …


Peridynamic Models For Fatigue And Fracture In Isotropic And In Polycrystalline Materials, Guanfeng Zhang May 2017

Peridynamic Models For Fatigue And Fracture In Isotropic And In Polycrystalline Materials, Guanfeng Zhang

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

To improve design and reliability, extensive efforts has been devoted to understanding damage and failure of materials and structures using numerical simulation, as a complement of theory and experiment. In this thesis, peridynamics is adopted to study fatigue and dynamic failure problems.

Fatigue is a major failure mode in engineering structures. Predicting fracture/failure under cyclic loading is a challenging problem. Classical model cannot directly be applied to problems with discontinuities. A peridynamic model is adopted in this work because of important advantages of peridynamics in allowing autonomous crack initiation and propagation. A recently proposed peridynamic fatigue crack model is considered …


Negahban Group Report: Saw-Tooth Shear Response Of Aged Poly(Methyl Methacrylate) (Pmma), Mehrdad Negahban Mar 2017

Negahban Group Report: Saw-Tooth Shear Response Of Aged Poly(Methyl Methacrylate) (Pmma), Mehrdad Negahban

Department of Mechanical and Materials Engineering: Faculty Publications

Results for isothermal saw-tooth shear loading experiments conducted on annealed and oven-cooled poly(methyl methacrylate) (PMMA) at temperatures between 50oC and 140oC. The experiments were conducted 1996.


Influence Of Spatial Variations Of Railroad Track Stiffness And Material Inclusions On Fatigue Life, Celestin Nkundineza Jan 2015

Influence Of Spatial Variations Of Railroad Track Stiffness And Material Inclusions On Fatigue Life, Celestin Nkundineza

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Railroad transportation is very important for economic growth and effective maintenance is one critical factor for its economic sustainability. The high repetitive forces from a moving railcar induce cyclic stresses that lead to rail bending and potential deterioration due to fatigue crack initiation and propagation. Previous research for prediction of fatigue life has been done under the assumptions of a uniform track bed and a homogeneous rail. However the spatial variation of the track stiffness is expected to increase the maximum stresses in the rail and, therefore, accelerate the fatigue process. The research described in this dissertation is focused on …


Kolsky Bar Experiment For High-Rate Large Deformations Of Polycarbonate, Jason Gerald Vogeler Dec 2013

Kolsky Bar Experiment For High-Rate Large Deformations Of Polycarbonate, Jason Gerald Vogeler

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Polycarbonate (PC) is a tough, transparent engineering thermoplastic. Its impact strength and ability undergo large plastic deformations without shatter make PC an ideal protective material for impact-resilient eyewear, aircraft windows and transparent armor. A good understanding of the response of this material to large deformations at high strain rates is critical for its utilization in these applications. To this end, a striker-less Kolsky bar device is employed in this work for the needed material characterization. The apparatus allow impulsive torsion and/or compression loadings with pulse durations sufficiently long for the plastic flow behavior to develop fully. Three new testing techniques …


Mechanics Of Blast Loading On Post-Mortem Human And Surrogate Heads In The Study Of Traumatic Brain Injury (Tbi) Using Experimental And Computational Approaches, Shailesh Govind Ganpule Mar 2013

Mechanics Of Blast Loading On Post-Mortem Human And Surrogate Heads In The Study Of Traumatic Brain Injury (Tbi) Using Experimental And Computational Approaches, Shailesh Govind Ganpule

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Blast induced neurotrauma (BINT) has been designated as the “signature injury” to warfighters in the recent military conflicts. The occurrence of traumatic brain injury (TBI) in blasts is controversial in the medical and scientific communities because the manifesting symptoms occur without visible injuries. Whether the primary blast waves alone can cause mechanical insult that is comparable to existing traumatic brain injury thresholds is still an open question, and this work is aimed to address this issue.

In the first part of this dissertation, mechanics of primary blast loading on Realistic Explosive Dummy (RED) head with and without helmets is studied …


Implementation Of Magnetic Resonance Elastography For The Investigation Of Traumatic Brain Injuries, Thomas Boulet Dec 2012

Implementation Of Magnetic Resonance Elastography For The Investigation Of Traumatic Brain Injuries, Thomas Boulet

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Magnetic resonance elastography (MRE) is a potentially transformative imaging modality allowing local and non-invasive measurement of biological tissue mechanical properties. It uses a specific phase contrast MR pulse sequence to measure induced vibratory motion in soft material, from which material properties can be estimated. Compared to other imaging techniques, MRE is able to detect tissue pathology at early stages by quantifying the changes in tissue stiffness associated with diseases. In an effort to develop the technique and improve its capabilities, two inversion algorithms were written to evaluate viscoelastic properties from the measured displacements fields. The first one was based on …


Studies Of Dynamic Crack Propagation And Crack Branching With Peridynamics, Youn Doh Ha Ph.D., Florin Bobaru Ph.D. Jan 2010

Studies Of Dynamic Crack Propagation And Crack Branching With Peridynamics, Youn Doh Ha Ph.D., Florin Bobaru Ph.D.

Department of Engineering Mechanics: Faculty Publications

In this paper we discuss the peridynamic analysis of dynamic crack branching in brittle materials and show results of convergence studies under uniform grid refinement (m-convergence) and under decreasing the peridynamic horizon (δ-convergence). Comparisons with experimentally obtained values are made for the crack-tip propagation speed with three different peridynamic horizons.We also analyze the influence of the particular shape of themicro-modulus function and of different materials (Duran 50 glass and soda-lime glass) on the crack propagation behavior. We show that the peridynamic solution for this problem captures all the main features, observed experimentally, of dynamic crack propagation and branching, as well …


Multiscale Modeling Of Impact On Heterogeneous Viscoelastic Solids With Evolving Microcracks, Flavio V. Souza Apr 2009

Multiscale Modeling Of Impact On Heterogeneous Viscoelastic Solids With Evolving Microcracks, Flavio V. Souza

Department of Engineering Mechanics: Dissertations, Theses, and Student Research

Multiscale computational techniques play a major role in solving problems related to viscoelastic composite materials due to the complexities inherent to these materials. In the present work, a numerical procedure for multiscale modeling of impact on heterogeneous viscoelastic solids containing evolving microcracks is proposed in which the (global scale) homogenized viscoelastic incremental constitutive equations have the same form as the local scale viscoelastic incremental constitutive equations, but the homogenized tangent constitutive tensor and the homogenized incremental history dependent stress tensor depend on the amount of damage accumulated at the local scale. Furthermore, the developed technique allows the computation of the …


Convergence, Adaptive Refinement, And Scaling In 1d Peridynamics, Florin Bobaru Ph.D., Mijia Yabg Ph.D., Leonardo F. Alves M.S., Stewart A. Silling Ph.D., Ebrahim Askari Ph.D., Jifeng Xu Ph.D. Jan 2009

Convergence, Adaptive Refinement, And Scaling In 1d Peridynamics, Florin Bobaru Ph.D., Mijia Yabg Ph.D., Leonardo F. Alves M.S., Stewart A. Silling Ph.D., Ebrahim Askari Ph.D., Jifeng Xu Ph.D.

Department of Engineering Mechanics: Faculty Publications

We introduce here adaptive refinement algorithms for the non-local method peridynamics, which was proposed (in J. Mech. Phys. Solids 2000; 48:175–209) as a reformulation of classical elasticity for discontinuities and long-range forces. We use scaling of the micromodulus and horizon and discuss the particular features of adaptivity in peridynamics for which multiscale modeling and grid refinement are closely connected. We discuss three types of numerical convergence for peridynamics and obtain uniform convergence to the classical solutions of static and dynamic elasticity problems in 1D in the limit of the horizon going to zero. Continuous micromoduli lead to optimal rates of …


Influence Of Van Der Waals Forces On Increasing The Strength And Toughness In Dynamic Fracture Of Nanofibre Networks: A Peridynamic Approach, Florin Bobaru Ph.D. Jan 2007

Influence Of Van Der Waals Forces On Increasing The Strength And Toughness In Dynamic Fracture Of Nanofibre Networks: A Peridynamic Approach, Florin Bobaru Ph.D.

Department of Engineering Mechanics: Faculty Publications

The peridynamic method is used here to analyse the effect of van der Waals forces on the mechanical behaviour and strength and toughness properties of three-dimensional nanofibre networks under imposed stretch deformation. The peridynamic formulation allows for a natural inclusion of long-range forces (such as van der Waals forces) by considering all interactions as ‘long-range’. We use van der Waals interactions only between different fibres and do not need to model individual atoms. Fracture is introduced at the microstructural (peridynamic bond) level for the microelastic type bonds, while van der Waals bonds can reform at any time. We conduct statistical …