Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Engineering Science and Materials

A Comparative Evaluation Of Oxidation And Combustion Phenomena In Ti-6al-4v Exposed To Earth Re-Entry And Arc-Jet Test Environments, Arlene Smith Dec 2022

A Comparative Evaluation Of Oxidation And Combustion Phenomena In Ti-6al-4v Exposed To Earth Re-Entry And Arc-Jet Test Environments, Arlene Smith

Open Access Theses & Dissertations

The Ti-6Al-4V alloy is widely used in aerospace applications for its beneficial combination of properties. However, this alloy has high solubility for oxygen and thus a high reactivity. Recovered data contained within the Columbia artifacts suggests that this alloy underwent an accelerated degradation and combustion reaction when exposed to the high enthalpy, low-pressure surroundings experienced during reentry into Earth's atmosphere. Arc-jet testing has provided a simulated aerothermodynamic heating environment to mimic what the spacecraft endured. When the effect of thermal alteration on this alpha-beta phase alloy was investigated during previous studies, optical metallography and microhardness tests revealed inconsistencies between samples …


Aero-Thermal Characterization Of Silicon Carbide Flexible Tps Using A 30kw Icp Torch, Walten Owens Jan 2015

Aero-Thermal Characterization Of Silicon Carbide Flexible Tps Using A 30kw Icp Torch, Walten Owens

Graduate College Dissertations and Theses

Flexible thermal protection systems are of interest due to their necessity for the success of future atmospheric entry vehicles. Current non-ablative flexible designs incorporate a two-dimensional woven fabric on the leading surface of the vehicle. The focus of this research investigation was to characterize the aerothermal performance of silicon carbide fabric using the 30 kW Inductively Coupled Plasma Torch located at the University of Vermont. Experimental results have shown that SiC fabric test coupons achieving surface temperatures between 1000°C and 1500°C formed an amorphous silicon dioxide layer within seconds after insertion into air plasmas. The transient morphological changes that occurred …