Open Access. Powered by Scholars. Published by Universities.®

University of Nebraska - Lincoln

Discipline
Keyword
Publication Year
Publication

Articles 1 - 20 of 20

Full-Text Articles in Electronic Devices and Semiconductor Manufacturing

Amorphous Boron Carbide-Amorphous Silicon Heterojunction Devices, Vojislav Medic Dec 2023

Amorphous Boron Carbide-Amorphous Silicon Heterojunction Devices, Vojislav Medic

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

This dissertation will show successful development and characterization of amorphous boron carbide-amorphous silicon heterojunction device with potential for neutron detection. The amorphous hydrogenated boron carbide (a-BC:H) has been extensively researched as a semiconductor for neutron voltaic device fabrication. Naturally occurring boron contains 19.8% of boron isotope B10 that has a high absorption cross section of thermal neutrons at lower energies, and boron carbide contains 14.7% of that B10 isotope. Therefore, as a semiconductor compound of boron a-BC:H has the ability to absorb radiation, generate charge carriers, and collect those carriers. Previous work on a-BC:H devices investigated the fabrication …


Chatgpt As Metamorphosis Designer For The Future Of Artificial Intelligence (Ai): A Conceptual Investigation, Amarjit Kumar Singh (Library Assistant), Dr. Pankaj Mathur (Deputy Librarian) Mar 2023

Chatgpt As Metamorphosis Designer For The Future Of Artificial Intelligence (Ai): A Conceptual Investigation, Amarjit Kumar Singh (Library Assistant), Dr. Pankaj Mathur (Deputy Librarian)

Library Philosophy and Practice (e-journal)

Abstract

Purpose: The purpose of this research paper is to explore ChatGPT’s potential as an innovative designer tool for the future development of artificial intelligence. Specifically, this conceptual investigation aims to analyze ChatGPT’s capabilities as a tool for designing and developing near about human intelligent systems for futuristic used and developed in the field of Artificial Intelligence (AI). Also with the helps of this paper, researchers are analyzed the strengths and weaknesses of ChatGPT as a tool, and identify possible areas for improvement in its development and implementation. This investigation focused on the various features and functions of ChatGPT that …


A Bibliometric Survey On Antipodal Vivaldi Antenna, Sumit Kumar, Amruta S. Dixit Apr 2021

A Bibliometric Survey On Antipodal Vivaldi Antenna, Sumit Kumar, Amruta S. Dixit

Library Philosophy and Practice (e-journal)

In this paper bibliometric survey is presented on Antipodal Vivaldi Antenna. The Antipodal Vivaldi Antenna is a broad band and has symmetric E plane and H plane. It has been used extensively in radars, wireless communication and dual polarization applications. The antipodal Vivaldi antenna has significant researches in biomedical imaging, optical lens, Ground-Penetrating Radar (GPR) System, detecting cancer, 5G communications etc. The bibliometric analysis is done for the reason to understand the reach of antipodal Vivaldi antenna and performance enhancement analysis worldwide. The Scopus and web of science are used for accomplishing this survey. The study focuses on 449 documents …


Metamaterials In 5g Antenna Designs: A Bibliometric Survey, Hema D. Raut, Laxmikant K. Shevada, Rajeshwari R. Malekar, Amruta S. Dixit, Sumit Kumar Apr 2021

Metamaterials In 5g Antenna Designs: A Bibliometric Survey, Hema D. Raut, Laxmikant K. Shevada, Rajeshwari R. Malekar, Amruta S. Dixit, Sumit Kumar

Library Philosophy and Practice (e-journal)

The demand of high gain and wideband compact antenna designs are gaining importance to fulfil the need of 5G communication systems. This has opened the doors for the researchers to explore 5G antennas incorporating metamaterials as they can meet the requirement of high gain and wideband compact antennas. Overview of various metamaterial-based antenna designs including Electromagnetic Band Gap (EBG), artificial Magnetic Conductor (AMC), Frequency Selective Surface (FSS) and Partially Reflective Surface (PRS) are discussed in the paper. The paper primarily focuses on bibliometric survey of various types of 5G metamaterial antennas in terms of number of documents published, leading universities …


A Bibliometric Survey On Ultra Wideband Multiple Input Multiple Output Antenna With Improved Isolation, Laxmikant K. Shevada, Hema D. Raut, Rajeshwari R. Malekar, Amruta S. Dixit, Sumit Kumar Dec 2020

A Bibliometric Survey On Ultra Wideband Multiple Input Multiple Output Antenna With Improved Isolation, Laxmikant K. Shevada, Hema D. Raut, Rajeshwari R. Malekar, Amruta S. Dixit, Sumit Kumar

Library Philosophy and Practice (e-journal)

Ultra wideband (UWB) technology remains a viable choice for very high speed data communication in future applications involving large bandwidth. For boosting the data communication efficiency and to mitigate the multipath fading issue faced by UWB system with existing narrowband systems, Multiple Input Multiple Output (MIMO) antenna system is used along with UWB. Mutual coupling which must be smaller in value plays a vital role in deciding the efficiency of MIMO antenna and hence it becomes as important aspect. The mutual coupling reduction techniques of various UWB MIMO antennas are surveyed in this bibliometric paper. The bibliometric survey aims to …


Electromagnon Excitation In Cupric Oxide Measured By Fabry-Pérot Enhanced Terahertz Mueller Matrix Ellipsometry, Sean Knight, Dharmalingam Prabhakaran, Christian Binek, Mathias Schubert Feb 2019

Electromagnon Excitation In Cupric Oxide Measured By Fabry-Pérot Enhanced Terahertz Mueller Matrix Ellipsometry, Sean Knight, Dharmalingam Prabhakaran, Christian Binek, Mathias Schubert

Christian Binek Publications

Here we present the use of Fabry-Pérot enhanced terahertz (THz) Mueller matrix ellipsometry to measure an electromagnon excitation in monoclinic cupric oxide (CuO). As a magnetically induced ferroelectric multiferroic, CuO exhibits coupling between electric and magnetic order. This gives rise to special quasiparticle excitations at THz frequencies called electromagnons. In order to measure the electromagnons in CuO, we exploit single-crystal CuO as a THz Fabry-Pérot cavity to resonantly enhance the excitation’s signature. This enhancement technique enables the complex index of refraction to be extracted. We observe a peak in the absorption coefficient near 0.705 THz and 215 K, which corresponds …


Electrical Characterization Of Irradiated Semiconducting Amorphous Hydrogenated Boron Carbide, George Glen Peterson Aug 2017

Electrical Characterization Of Irradiated Semiconducting Amorphous Hydrogenated Boron Carbide, George Glen Peterson

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Semiconducting amorphous partially dehydrogenated boron carbide has been explored as a neutron voltaic for operation in radiation harsh environments, such as on deep space satellites/probes. A neutron voltaic device could also be used as a solid state neutron radiation detector to provide immediate alerts for radiation workers/students, as opposed to the passive dosimetry badges utilized today. Understanding how the irradiation environment effects the electrical properties of semiconducting amorphous partially dehydrogenated boron carbide is important to predicting the stability of these devices in operation. p-n heterojunction diodes were formed from the synthesis of semiconducting amorphous partially dehydrogenated boron carbide on silicon …


Laser-Assisted Metal Organic Chemical Vapor Deposition Of Gallium Nitride, Hossein Rabiee Golgir Jul 2017

Laser-Assisted Metal Organic Chemical Vapor Deposition Of Gallium Nitride, Hossein Rabiee Golgir

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Due to its unique properties, gallium nitride is of great interest in industry applications including optoelectronics (LEDs, diode laser, detector), high power electronics, and RF and wirelss communication devices. The inherent shortcomings of current conventional deposition methods and the ever-increasing demand for gallium nitride urge extended efforts for further enhancement of gallium nitride deposition. The processes of conventional methods for gallium nitride deposition, which rely on thermal heating, are inefficient energy coupling routes to drive gas reactions. A high deposition temperature (1000-1100 °C) is generally required to overcome the energy barriers to precursor adsorption and surface adatom migration. However, there …


Real-Time Internal Temperature Estimation And Health Monitoring For Igbt Modules, Ze Wang Jan 2017

Real-Time Internal Temperature Estimation And Health Monitoring For Igbt Modules, Ze Wang

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Field experiences have demonstrated that power semiconductor devices, such as insulated-gate bipolar transistors (IGBTs), are among the most fragile components of power electronic converters. Thermomechanical stresses produced by temperature variations during operational and environmental loads are the major causes of IGBT degradation. As the devices are often operated under complex working conditions, temperature variations and the associated damage are difficult to predict during the converter design stage. A promising approach—online health monitoring and prognosis for power semiconductor devices—that can avoid device failure and effectively schedule maintenance has attracted much interest.

This dissertation research focused on real-time accurate internal temperature estimation …


Growth, Characterization And Simulation Of Tungsten Selenide Thin Films For Photovoltaic Applications, Qinglei Ma May 2016

Growth, Characterization And Simulation Of Tungsten Selenide Thin Films For Photovoltaic Applications, Qinglei Ma

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

An excellent candidate for an earth abundant absorber material is tungsten selenide (WSe2) which can be directly grown as a p-type semiconductor with a band gap value that matches well the solar spectrum. Although several fabrication methods were reported, further improvement is highly needed to make high quality WSe2 films. In addition, the numerical modelling of WSe2 solar devices is highly desired to assess the overall utility of the material. In this work, the growth and characterization of tungsten selenide thin films are investigated, as well simulations of homo- and hetero-junction devices. In the first part, …


Skin Effect Suppression In Infrared-Laser Irradiated Planar Multi-Walled Carbon Nanotube/ Cu Conductors, Kamran Keramatnejad, Yang Gao, Yunshen Zhou, Hossein Rabiee Glogir, Mengmeng Wang, Yongfeng Lu Oct 2015

Skin Effect Suppression In Infrared-Laser Irradiated Planar Multi-Walled Carbon Nanotube/ Cu Conductors, Kamran Keramatnejad, Yang Gao, Yunshen Zhou, Hossein Rabiee Glogir, Mengmeng Wang, Yongfeng Lu

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Skin effect suppression in planar multi-walled carbon nanotube (MWCNT)/Copper (Cu) conductors was realized at the 0-10 MHz frequency range through infrared laser irradiation of MWCNTs, which were coated on the surface of the Cu substrate via the electrophoretic deposition (EPD) method. The effect of laser irradiation and its power density on electrical and structural properties of the MWCNT/Cu conductors was investigated using a wavelength-tunable CO2 laser and then comparing the performance of the samples prepared at different conditions with that of pristine Cu. The irradiation at λ=9.219 μm proved to be effective in selective delivery of energy towards depths close …


Multiferroic Tunnel Junctions And Ferroelectric Control Of Magnetic State At Interface, Y. W. Yin, M. Raju, W. J. Hu, John D. Burton, Y.-M. Kim, A. Y. Borisevich, S. J. Pennycook, S. M. Yang, T. W. Noh, Alexei Gruverman, X. G. Li, Z. D. Zhang, Evgeny Y. Tsymbal, Qi Li Jan 2015

Multiferroic Tunnel Junctions And Ferroelectric Control Of Magnetic State At Interface, Y. W. Yin, M. Raju, W. J. Hu, John D. Burton, Y.-M. Kim, A. Y. Borisevich, S. J. Pennycook, S. M. Yang, T. W. Noh, Alexei Gruverman, X. G. Li, Z. D. Zhang, Evgeny Y. Tsymbal, Qi Li

Alexei Gruverman Publications

As semiconductor devices reach ever smaller dimensions, the challenge of power dissipation and quantum effect place a serious limit on the future device scaling. Recently, a multiferroic tunnel junction (MFTJ) with a ferroelectric barrier sandwiched between two ferromagnetic electrodes has drawn enormous interest due to its potential applications not only in multi-level data storage but also in electric field controlled spintronics and nanoferronics. Here, we present our investigations on four-level resistance states, giant tunneling electroresistance (TER) due to interfacial magnetoelectric coupling, and ferroelectric control of spin polarized tunneling in MFTJs. Coexistence of large tunneling magnetoresistance and TER has been observed …


Characterization And Testing Of A 5.8 Kv Sic Pin Diode For Electric Space Propulsion Applications, Alexandra Toftul Aug 2014

Characterization And Testing Of A 5.8 Kv Sic Pin Diode For Electric Space Propulsion Applications, Alexandra Toftul

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Inductive Pulsed Plasma Thrusters (IPPTs) are a type of in-space propulsion that has multiple advantages over conventional chemical propulsion for long-duration, deep space missions. Existing IPPT prototypes utilize spark gap switches, however these are subject to corrosion problems that make them unreliable for long-term use. Recent advances in solid state switching technology have opened up a variety of switching options that could provide greater reliability, controllability, and increased energy efficiency. Taking advantage of this, a novel thruster drive circuit topology containing a high-power silicon controlled rectifier (SCR) and series fast recovery diode (FRD) is proposed that is expected to increase …


Physical Design Of A Smart Camera With Integrated Digital Pixel Sensors Using A 0.13Μm 8-Layer Metal Cmos Process, Mahir K. Gharzai Dec 2013

Physical Design Of A Smart Camera With Integrated Digital Pixel Sensors Using A 0.13Μm 8-Layer Metal Cmos Process, Mahir K. Gharzai

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

The design of cameras has historically kept imagery and computational circuitry isolated in an attempt to maximize image quality by improving pixel pitch and routing density. Although this technique has worked in creating high density arrays of pixels for large resolution imagers, it has never been able to achieve high framerate computational operations.

A radical approach is introduced to solve this dilemma by creating compact, low- power pixel elements with built-in analog-to-digital converters that directly interface with digital logic. These pixels are capable of integrating alongside logic cells and to create an array of pixels inside the processor that can …


Modeling Of Power Semiconductor Devices, Tanya Kirilova Gachovska Aug 2012

Modeling Of Power Semiconductor Devices, Tanya Kirilova Gachovska

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

One of the requirements for choosing a proper power electronic device for a converter is that it must possess a low specific on-resistance. The specific on-resistance of a bipolar device is related to the base width and doping concentration of the lightly doped drift region. This means that the doping concentration and the width of the low-doped base region in a bipolar device must be carefully considered to achieve a desired avalanche breakdown voltage and on-resistance. In order to determine the technological parameters of a semiconductor device, a one dimensional analysis is used to calculate the minimum depletion layer width, …


Fabrication And Characterization Of Thermomechanically Processed Sulfur And Boron Doped Amorphous Carbon Films, Lonnie Carlson Aug 2012

Fabrication And Characterization Of Thermomechanically Processed Sulfur And Boron Doped Amorphous Carbon Films, Lonnie Carlson

Department of Chemical and Biomolecular Engineering: Theses and Student Research

Small scale, high power density, reliable, and long-life power supplies would be useful or even critical for space missions or the growing number of microdetectors, microsensors, and miniature vehicles. Alpha or beta particle voltaic devices could satisfy these requirements but have been shown to degrade quickly due to radiation damage. Amorphous carbon (a-C) PN junctions or PIN devices could provide radiation hardness and sufficiently high efficiency. As the range of alpha and beta particles in a-C is ~20-120μm, much thicker films than are typical are needed to maximize collection of the particle energy.

In this work, the fabrication of thermomechanically …


The Role Of Rare Earth Dopants In Semiconducting Host System For Spin Electronic Devices, Juan A. Colon Santana Jul 2012

The Role Of Rare Earth Dopants In Semiconducting Host System For Spin Electronic Devices, Juan A. Colon Santana

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

The doping of a wide band gap insulator offers an opportunity to increase the coupling between free carriers and magnetic impurities under the magnetic polaron model, leading to an enhanced in the Curie temperature of the host compound, critical for the fabrication of devices with magnetic properties. Some rare earth elements have large intrinsic magnetic moments due to unfilled 4d orbitals, and have been readily incorporated in materials for optical applications. Here the rare earths gadolinium and cerium were explored either as dopants or as part of the high-K semiconducting compound for the fabrication of magnetic heterojunction devices with magnetic …


An Rf Cmos Implementation Of An Adaptive Filter For Narrow-Band Interferer Suppression In Uwb Systems, Markus Both Dec 2011

An Rf Cmos Implementation Of An Adaptive Filter For Narrow-Band Interferer Suppression In Uwb Systems, Markus Both

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Ultra-wideband (UWB) technology is a new type of technology for wireless communication that is based on the transmission of low power sub-nanosecond pulses. UWB communication utilizes a large bandwidth that overlaps and is coexistent with other wireless communication standards that can be also considered as narrow-band interferers. Because UWB systems are highly susceptible to narrow-band interferers, there is a demand for interferer suppression. An adaptive filter consisting of a two-element diversity receiver that performs minimum mean square error combining (MMSE) by the LMS algorithm is proposed. Thereby the elements of the LMS algorithm as well as the receiver LNA were …


In-Situ Ellipsometry Characterization Of Anodically Grown Silicon Dioxide And Lithium Intercalation Into Silicon, Eric A. Montgomery Nov 2011

In-Situ Ellipsometry Characterization Of Anodically Grown Silicon Dioxide And Lithium Intercalation Into Silicon, Eric A. Montgomery

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this thesis, in-situ ellipsometry and electroanalytical investigations of two electrochemical processes are reported: including the formation of anodically grown silicon dioxide and the intercalation of lithium into silicon. Analysis of the ellipsometry data shows that the anodically grown silicon dioxide layer is uniform and has similar properties as thermally grown silicon dioxide. The lithium-ion intercalation data reveals non-uniform thin film formation, which requires further studies and development of appropriate ellipsometric optical models.

Advisers: Eva Schubert and Mathias Schubert


Growth And Characterization Of Silicon Carbide Thin Films Using A Nontraditional Hollow Cathode Sputtering Technique, James Huguenin-Love Jan 2010

Growth And Characterization Of Silicon Carbide Thin Films Using A Nontraditional Hollow Cathode Sputtering Technique, James Huguenin-Love

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

Silicon carbide (SiC) is considered a suitable candidate for high-power, high-frequency devices due to its wide bandgap, high breakdown field, and high electron mobility. It also has the unique ability to synthesize graphene on its surface by subliming Si during an annealing stage. The deposition of SiC is most often carried out using chemical vapor deposition (CVD) techniques, but little research has been explored with respect to the sputtering of SiC.

Investigations of the thin film depositions of SiC from pulse sputtering a hollow cathode SiC target are presented. Although there are many different polytypes of SiC, techniques are discussed …