Open Access. Powered by Scholars. Published by Universities.®

Electromagnetics and Photonics Commons

Open Access. Powered by Scholars. Published by Universities.®

Engineering Science and Materials

Institution
Keyword
Publication Year
Publication
Publication Type

Articles 1 - 19 of 19

Full-Text Articles in Electromagnetics and Photonics

Classification Of Electrical Current Used In Electroplastic Forming, Tyler Grimm May 2023

Classification Of Electrical Current Used In Electroplastic Forming, Tyler Grimm

All Dissertations

Electrically assisted manufacturing (EAM) is the direct application of an electric current to a workpiece during manufacturing. This advanced manufacturing process has been shown to produce anomalous effects which extend beyond the current state of modeling of thermal influences. These purported non-thermal effects have collectively been termed electroplastic effects (EPEs).

While there is a distinct difference in results between steady-state (ideal DC) testing and pulsed current testing, the very definition of these two EAM methods has not been well established. A "long" pulse may be considered DC current; a "short" pulse may produce electroplastic effects; and even "steady-state" current shapes …


Measuring The Electrical Properties Of 3d Printed Plastics In The W-Band, Noah Gregory May 2022

Measuring The Electrical Properties Of 3d Printed Plastics In The W-Band, Noah Gregory

Electrical Engineering Undergraduate Honors Theses

3D printers are a method of additive manufacturing that consists of layering material to produce a 3D structure. There are many types of 3D printers as well as many types of materials that are capable of being printed with. The most cost-effective and well documented method of 3D printing is called Fused Deposition Modeling (FDM). FDM printers work by feeding a thin strand of plastic filament through a heated extruder nozzle. This plastic is then deposited on a flat, typically heated, surface called a print bed. The part is then built by depositing thin layers of plastic in the shape …


A Computational Exploration Of The Scandate Cathode Surface, Shankar Miller-Murthy Jan 2022

A Computational Exploration Of The Scandate Cathode Surface, Shankar Miller-Murthy

Theses and Dissertations--Chemical and Materials Engineering

The exact surface configuration of scandate cathodes has been a point of contention for the materials community for a long time. Without proper understanding of it and the related structures and emission mechanisms, scandate cathodes remain patchy and unreliable emitters. Thus, density functional theory techniques were applied to various potential surface arrangements and found that there are several low-energy surfaces with low work functions that incorporate a scandium interlayer between tungsten and oxygen or otherwise have a scandium-on-tungsten structure. Furthermore, it was discovered that adding a monolayer of scandium directly to a tungsten surface is surprisingly favorable, thermodynamically. While none …


Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand Jan 2021

Development Of Light Actuated Chemical Delivery Platform On A 2-D Array Of Micropore Structure, Hojjat Rostami Azmand, Hojjat Rostami Azmand

Dissertations and Theses

Localized chemical delivery plays an essential role in the fundamental information transfers within biological systems. Thus, the ability to mimic the natural chemical signal modulation would provide significant contributions to understand the functional signaling pathway of biological cells and develop new prosthetic devices for neurological disorders. In this paper, we demonstrate a light-controlled hydrogel platform that can be used for localized chemical delivery in a high spatial resolution. By utilizing the photothermal behavior of graphene-hydrogel composites confined within micron-sized fluidic channels, patterned light illumination creates the parallel and independent actuation of chemical release in a group of fluidic ports. The …


Development Of High-Density Propulsion System Technologies For Interplanetary Small Satellites And Cubesats, Morgan Andrew Roddy Jul 2020

Development Of High-Density Propulsion System Technologies For Interplanetary Small Satellites And Cubesats, Morgan Andrew Roddy

Graduate Theses and Dissertations

The goal of this research was to support the development of a novel propulsion system for small satellites (<180 kg) and CubeSats. This was pursued by conducting a collection of studies that were designed to provide engineering data that would be critical in designing a functional prototype. The novel propulsion system was conceived by the author to provide best-in-class performance for the small satellite and CubeSat families of spacecraft. This context presents specific design requirements that the presented technology attempts to satisfy. The most critical among these is high density; the propellant was designed to be stored with high density and the thruster was designed to be as compact as possible. The propulsion system is composed of two primary elements, a propellant generator and a thruster. The propellant generator works by sublimating a solid crystal into vapor and then using this vapor to etch a dense metal. The resulting gaseous byproducts of this reaction are the propellant. This dissertation used xenon difluoride (XeF2) vapor to etch tungsten (W) which react to form xenon gas (Xe) and tungsten hexafluoride (WF6). This approach gave a theoretical propellant storage density 5.40 g/cm3; and 5.17 g/cm3 was demonstrated. The sublimation dynamics of the XeF2 were studied as a function of surface area and temperature and it was found to be suitable for the intended application due to its high effluence rate; that is, it sublimates fast enough to be useful. The sublimation rates are on the order of 10’s of µg/s. The etch rate of XeF2 on W was also studied and found to be suitably fast to provide useful amounts of reactants for use as a propellant, again on the order of 1’s of µg/s. The thruster is an electrostatic radio frequency (RF) ion thruster design and is manufactured with Low Temperature Co-Fired Ceramic (LTCC) materials system and manufacturing technology. Manufacturing samples of the thruster were built at the University of Arkansas in July 2015 and tested at NASA’s Marshall Space Flight Center in May 2018. Testing validated the viability of the LTCC thruster and provided valuable information on how to improve the thruster’s design.


Focused Beam System Biaxial Material Characterization, Nicholas A. O'Gorman Mar 2020

Focused Beam System Biaxial Material Characterization, Nicholas A. O'Gorman

Theses and Dissertations

Electromagnetic material characterization is the process of determining the constitutive parameters (complex permittivity and permeability) of given a sample. Due to the large number of unknowns involved, multiple unique measurements are required for material property extraction. Many measurement methods, such as waveguides and striplines, possess a rigid internal structure that the sample being measured must adhere to. This rigidity limits these methods to samples that fit within the device and inhibits oblique sample orientations, limiting the number of independent measurements that can be obtained. A focus beam system, due to being an open system with greater freedom in sample size …


Ballistic Evaluation Of Carbon Nanotube Sheet Material In Multifunctional Applications, Casey M. Keilbarth Mar 2019

Ballistic Evaluation Of Carbon Nanotube Sheet Material In Multifunctional Applications, Casey M. Keilbarth

Theses and Dissertations

Significant development of carbon nanotubes has occurred since they were first studied in the 1990's. Attempts to capture the phenomenal molecular properties in practical applications are gaining ground as new methods of producing CNTs have been developed. This thesis sought to determine if the addition of commercially produced CNT sheets to thin carbon fiber panels improved the ballistic properties of the panel. The difference between 0 and 4 CNT sheets was studied. The hypothesis was that inte- grating CNT sheets into the laminate would increase the projectile energy absorbed by the panel and reduce the damage to the panel incurred …


Effective Magnetic And Electric Response Of Composite Materials, Mona Hassan Alsaleh Nov 2018

Effective Magnetic And Electric Response Of Composite Materials, Mona Hassan Alsaleh

Doctoral Dissertations

Metamaterials (MMs) are nanocomposite materials consisting of metal-dielectric resonators much smaller in size than the wavelength of the incident light. Common examples of metamaterials are based on split ring resonators (SRRs), parallel wires or strips and fishnet structures. These types of materials are designed and fabricated in order to provide unique optical responses to the incident electromagnetic radiation that are not available in naturally existing materials. The MMs can exhibit unusual properties such as strong magnetism at terahertz (THz) and optical frequencies. Additionally, negative index materials (NIMs) can provide negative index of refraction which can be used in many applications …


Magneto-Optical Properties Of Thin Permalloy Films: A Study Of The Magneto-Optical Generation Of Light Carrying Angular Momentum, Patrick D. Montgomery Jan 2018

Magneto-Optical Properties Of Thin Permalloy Films: A Study Of The Magneto-Optical Generation Of Light Carrying Angular Momentum, Patrick D. Montgomery

Theses and Dissertations--Electrical and Computer Engineering

Magneto-optical materials such as permalloy can be used to create artificial spin- ice (ASI) lattices with antiferromagnetic ordering. Magneto-optical materials used to create diffraction lattices are known to exhibit magnetic scattering at the half- order Bragg peak while in the ground state. The significant drawbacks of studying the magneto-optical generation of OAM using x-rays are cost, time, and access to proper equipment. In this work, it is shown that the possibility of studying OAM and magneto-optical materials in the spectrum of visible light at or around 2 eV is viable. Using spectroscopic ellipsometry it is possible to detect a change …


Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel Nov 2017

Analyses Of Densely Crosslinked Phenolic Systems Using Low Field Nmr, Jigneshkumar Patel

Doctoral Dissertations

A uniform dispersion of reactants is necessary to achieve a complete reaction involving multi-components, especially for the crosslinking of rigid high-performance materials. In these reactions, miscibility is crucial for curing efficiency. This miscibility is typically enhanced by adding a third component, a plasticizer. For the reaction of the highly crystalline crosslinking agent hexamethylenetetramine (HMTA) with a strongly hydrogen-bonded phenol formaldehyde resin, furfural has been traditionally used as the plasticizer. However, the reason for its effectiveness is not clear. In this doctoral thesis work, miscibility and crosslinking efficiency of plasticizers in phenolic curing reactions are studied by thermal analysis and spectroscopic …


Towards The Scalability And Hybrid Parallelization Of A Spatially Variant Lattice Algorithm, Henry Roger Moncada Lopez Jan 2016

Towards The Scalability And Hybrid Parallelization Of A Spatially Variant Lattice Algorithm, Henry Roger Moncada Lopez

Open Access Theses & Dissertations

The purpose of this research is to design a faster implementation of the spatially variant algorithm that improves its performance when it is running on a parallel computer system.

The spatially variant algorithm is used to synthesize a spatially variant lattice for a periodic electromagnetic structure. The algorithm has the ability to spatially vary the unit cell orientation and exploit its directional dependencies. The algorithm produces a lattice that is smooth, continuous and free of defects. The lattice spacing remains strikingly uniform when the unit cell orientation, lattice spacing, fill fraction and more are spatially varied. This is important for …


3d Printed Electromagnetic Transmission And Electronic Structures Fabricated On A Single Platform Using Advanced Process Integration Techniques, Paul I. Deffenbaugh Jan 2014

3d Printed Electromagnetic Transmission And Electronic Structures Fabricated On A Single Platform Using Advanced Process Integration Techniques, Paul I. Deffenbaugh

Open Access Theses & Dissertations

3D printing has garnered immense attention from many fields including in-office rapid prototyping of mechanical parts, outer-space satellite replication, garage functional firearm manufacture, and NASA rocket engine component fabrication. 3D printing allows increased design flexibility in the fabrication of electronics, microwave circuits and wireless antennas and has reached a level of maturity which allows functional parts to be printed. Much more work is necessary in order to perfect the processes of 3D printed electronics especially in the area of automation. Chapter 1 shows several finished prototypes of 3D printed electronics as well as newly developed techniques in fabrication. Little is …


Wireless Transmission Network : A Imagine, Radhey Shyam Meena Engineer, Neeraj Kumar Garg Asst.Prof Apr 2013

Wireless Transmission Network : A Imagine, Radhey Shyam Meena Engineer, Neeraj Kumar Garg Asst.Prof

Radhey Shyam Meena

World cannot be imagined without electrical power. Generally the power is transmitted through transmission networks. This paper describes an original idea to eradicate the hazardous usage of electrical wires which involve lot of confusion in particularly organizing them. Imagine a future in which wireless power transfer is feasible: cell phones, household robots, mp3 players, laptop computers and other portable electronic devices capable of charging themselves without ever being plugged in freeing us from that final ubiquitous power wire. This paper includes the techniques of transmitting power without using wires with an efficiency of about 95% with non-radioactivemethods. In this paper …


Battery Energy Storage System In Solar Power Generation, Radhey Shyam Meena Er., Deepa Sharma Mar 2013

Battery Energy Storage System In Solar Power Generation, Radhey Shyam Meena Er., Deepa Sharma

Radhey Shyam Meena

Grid-connected solar PV dramatically changes the load profile of an electric utility customer. The expected widespread adoption of solar generation by customers on the distribution system poses significant challenges to system operators both in transient and steady state operation, from issues including voltage swings, sudden weather-induced changes in generation, and legacy protective devices designed with one-way power flow in mind


Battery Energy Storage System In Solar Power Generation, Radhey Shyam Meena Er. Jan 2013

Battery Energy Storage System In Solar Power Generation, Radhey Shyam Meena Er.

Radhey Shyam Meena

As solar photovoltaic power generation becomes more commonplace, the inherent intermittency of the solar resource poses one of the great challenges to those who would design and implement the next generation smart grid. Specifically, grid-tied solar power generation is a distributed resource whose output can change extremely rapidly, resulting in many issues for the distribution system operator with a large quantity of installed photovoltaic devices. Battery energy storage systems are increasingly being used to help integrate solar power into the grid. These systems are capable of absorbing and delivering both real and reactive power with sub-second response times. With these …


Switch Yard Operation In Thermal Power Plant(Katpp Jhalawar Rajasthan), Radhey Shyam Meena Er. Jul 2012

Switch Yard Operation In Thermal Power Plant(Katpp Jhalawar Rajasthan), Radhey Shyam Meena Er.

Radhey Shyam Meena

Switchyard Provides the facilities for switching ,protection & Control of electric power. To handle high Voltage power with proper Safety measures. To isolate the noises coming from the grid with true 50Hz power SWITCH YARD IS IMPORTANT PART IN THERMAL PLANT. IN KALISINDH THERMAL 400KV AND 220KV SWITCH YARD LOCATED.


Experimental Verification Of The Linear Relationship Between Stress And The Reciprocal Of The Peak Barkhausen Voltage In Astm A36 Steel, Orfeas Kypris, Ikenna Nlebedim, David Jiles Jan 2012

Experimental Verification Of The Linear Relationship Between Stress And The Reciprocal Of The Peak Barkhausen Voltage In Astm A36 Steel, Orfeas Kypris, Ikenna Nlebedim, David Jiles

Orfeas Kypris

This study presents an experimental validation of a model theory for determining the relationship between a nondestructive measurement parameter and a property of interest. It was found that the reciprocal of the peak envelope amplitude of the Barkhausen emission voltage follows a linear relationship with stress. A linear relationship between stress and the reciprocal of the root mean square voltage was also obtained. These observations represent an important step towards improving the use of Barkhausen signals for magnetic non-destructive evaluation of stress as a function of depth in ferromagnetic load bearing structures.


In-Situ Ellipsometry Characterization Of Anodically Grown Silicon Dioxide And Lithium Intercalation Into Silicon, Eric A. Montgomery Nov 2011

In-Situ Ellipsometry Characterization Of Anodically Grown Silicon Dioxide And Lithium Intercalation Into Silicon, Eric A. Montgomery

Department of Electrical and Computer Engineering: Dissertations, Theses, and Student Research

In this thesis, in-situ ellipsometry and electroanalytical investigations of two electrochemical processes are reported: including the formation of anodically grown silicon dioxide and the intercalation of lithium into silicon. Analysis of the ellipsometry data shows that the anodically grown silicon dioxide layer is uniform and has similar properties as thermally grown silicon dioxide. The lithium-ion intercalation data reveals non-uniform thin film formation, which requires further studies and development of appropriate ellipsometric optical models.

Advisers: Eva Schubert and Mathias Schubert


Temperature-Induced Phenomena In Systems Of Magnetic Nanoparticles, Abdul Wazed Bhuiya Jan 2009

Temperature-Induced Phenomena In Systems Of Magnetic Nanoparticles, Abdul Wazed Bhuiya

Open Access Theses & Dissertations

Magnetic nanoparticle ensembles have received a lot of attention, stemming in part from their current and potential applications in biomedicine and in the development of high-density magnetic storage media. Key to the functionality of these systems are microscopic structures and mechanisms that make them exhibit unique properties and behave differently from their bulk counterparts.

We studied microscopic structures and processes that dictate macroscopic properties, behavior and functionality of magnetic nanoparticle ensembles. As the temperature T strongly influences the magnetic behavior of these systems, we studied temperature dependent magnetic properties using AC-susceptibility and DC-magnetization measurements carried out over a broad range …