Open Access. Powered by Scholars. Published by Universities.®

Other Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Other Computer Engineering

Coalgebraic Logics (Dagstuhl Seminar 12411), Ernst-Erich Doberkat, Alexander Kurz Jan 2012

Coalgebraic Logics (Dagstuhl Seminar 12411), Ernst-Erich Doberkat, Alexander Kurz

Engineering Faculty Articles and Research

This report documents the program and the outcomes of Dagstuhl Seminar 12411 “Coalgebraic Logics”. The seminar deals with recent developments in the area of coalgebraic logic, a branch of logics which combines modal logics with coalgebraic semantics. Modal logic finds its uses when reasoning about behavioural and temporal properties of computation and communication, coalgebras have evolved into a general theory of systems. Consequently, it is natural to combine both areas for a mathematical description of system specification. Coalgebraic logics are closely related to the broader categories semantics/formal methods and verification/logic.


Completeness For The Coalgebraic Cover Modality, Clemens Kupke, Alexander Kurz, Yde Venema Jan 2012

Completeness For The Coalgebraic Cover Modality, Clemens Kupke, Alexander Kurz, Yde Venema

Engineering Faculty Articles and Research

We study the finitary version of the coalgebraic logic introduced by L. Moss. The syntax of this logic, which is introduced uniformly with respect to a coalgebraic type functor, required to preserve weak pullbacks, extends that of classical propositional logic with a so-called coalgebraic cover modality depending on the type functor. Its semantics is defined in terms of a categorically defined relation lifting operation.

As the main contributions of our paper we introduce a derivation system, and prove that it provides a sound and complete axiomatization for the collection of coalgebraically valid inequalities. Our soundness and completeness proof is algebraic ...


Strongly Complete Logics For Coalgebras, Alexander Kurz, Jiří Rosický Jan 2012

Strongly Complete Logics For Coalgebras, Alexander Kurz, Jiří Rosický

Engineering Faculty Articles and Research

Coalgebras for a functor model different types of transition systems in a uniform way. This paper focuses on a uniform account of finitary logics for set-based coalgebras. In particular, a general construction of a logic from an arbitrary set-functor is given and proven to be strongly complete under additional assumptions. We proceed in three parts.

Part I argues that sifted colimit preserving functors are those functors that preserve universal algebraic structure. Our main theorem here states that a functor preserves sifted colimits if and only if it has a finitary presentation by operations and equations. Moreover, the presentation of the ...