Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Computer Engineering

Numerical Design And Optimization Of Near-Infrared Band- Pass Filter, Hafiza Syeeda Faiza, Ghazi Aman Nowsherwan, Basem A. Abu Izneid, Muhammad Azhar, Saira Riaz, Syed Sajjad Hussain, Saira Ikram, Mohsin Khan, Shahzad Naseem, Mohammad Kanan, Ibrahim M. Mansour Jul 2023

Numerical Design And Optimization Of Near-Infrared Band- Pass Filter, Hafiza Syeeda Faiza, Ghazi Aman Nowsherwan, Basem A. Abu Izneid, Muhammad Azhar, Saira Riaz, Syed Sajjad Hussain, Saira Ikram, Mohsin Khan, Shahzad Naseem, Mohammad Kanan, Ibrahim M. Mansour

Applied Mathematics & Information Sciences

Band-pass filters functioning in the near-infrared (IR) range are desired for laser technology, multi-photon fluorescence, and IR imaging applications. In this study, we have designed four band-pass filters in the near Infrared spectrum (900-1200 nm) by vertically stacking different high and low-index materials. The band-pass filters are modelled by Essential Macleod software with different thicknesses. The layer’s thicknesses were optimized in such a way to provide the negligible reflectance and maximum transmission on the front side. All the simulated band-pass filters exhibit high transmittance, but TiO2/Al2O3 and Ta2O5/Al2O3 outperforms other modelled structure in terms of performance due to the better …


Modeling, Simulation And Control Of Microrobots For The Microfactory., Zhong Yang May 2023

Modeling, Simulation And Control Of Microrobots For The Microfactory., Zhong Yang

Electronic Theses and Dissertations

Future assembly technologies will involve higher levels of automation in order to satisfy increased microscale or nanoscale precision requirements. Traditionally, assembly using a top-down robotic approach has been well-studied and applied to the microelectronics and MEMS industries, but less so in nanotechnology. With the boom of nanotechnology since the 1990s, newly designed products with new materials, coatings, and nanoparticles are gradually entering everyone’s lives, while the industry has grown into a billion-dollar volume worldwide. Traditionally, nanotechnology products are assembled using bottom-up methods, such as self-assembly, rather than top-down robotic assembly. This is due to considerations of volume handling of large …


Quantum Computing And Its Applications In Healthcare, Vu Giang Jan 2023

Quantum Computing And Its Applications In Healthcare, Vu Giang

OUR Journal: ODU Undergraduate Research Journal

This paper serves as a review of the state of quantum computing and its application in healthcare. The various avenues for how quantum computing can be applied to healthcare is discussed here along with the conversation about the limitations of the technology. With more and more efforts put into the development of these computers, its future is promising with the endeavors of furthering healthcare and various other industries.


Physically Based Rendering Techniques To Visualize Thin-Film Smoothed Particle Hydrodynamics Fluid Simulations, Aditya H. Prasad Jun 2021

Physically Based Rendering Techniques To Visualize Thin-Film Smoothed Particle Hydrodynamics Fluid Simulations, Aditya H. Prasad

Dartmouth College Undergraduate Theses

This thesis introduces a methodology and workflow I developed to visualize smoothed hydrodynamic particle based simulations for the research paper ’Thin-Film Smoothed Particle Hydrodynamics Fluid’ (2021), that I co-authored. I introduce a physically based rendering model which allows point cloud simulation data representing thin film fluids and bubbles to be rendered in a photorealistic manner. This includes simulating the optic phenomenon of thin-film interference and rendering the resulting iridescent patterns. The key to the model lies in the implementation of a physically based surface shader that accounts for the interference of infinitely many internally reflected rays in its bidirectional surface …


Integrated Environment And Proximity Sensing For Uav Applications, Shawn S. Brackett Aug 2017

Integrated Environment And Proximity Sensing For Uav Applications, Shawn S. Brackett

Electronic Theses and Dissertations

As Unmanned Aerial Vehicle (UAV), or “drone” applications expand, new methods for sensing, navigating and avoiding obstacles need to be developed. The project applies an Extended Kalman Filter (EKF) to a simulated quadcopter vehicle though Matlab in order to estimate not only the vehicle state but the world state around the vehicle. The EKF integrates multiple sensor readings from range sensors, IMU sensors, and radiation sensors and combines this information to optimize state estimates. The result is an estimated world map to be used in vehicle navigation and obstacle avoidance.

The simulation handles the physics behind the vehicle flight. As …


On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster Jun 2017

On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster

Russell C. Hardie

We describe a numerical wave propagation method for simulating long range imaging of an extended scene under anisoplanatic conditions. Our approach computes an array of point spread functions (PSFs) for a 2D grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. To validate the simulation we compare simulated outputs with the theoretical anisoplanatic tilt correlation and differential tilt variance. This is in addition to comparing the long- and short-exposure PSFs, and isoplanatic angle. Our validation analysis shows an …


On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster May 2017

On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster

Electrical and Computer Engineering Faculty Publications

We describe a numerical wave propagation method for simulating long range imaging of an extended scene under anisoplanatic conditions. Our approach computes an array of point spread functions (PSFs) for a 2D grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. To validate the simulation we compare simulated outputs with the theoretical anisoplanatic tilt correlation and differential tilt variance. This is in addition to comparing the long- and short-exposure PSFs, and isoplanatic angle. Our validation analysis shows an …


Computational Framework For Small Animal Spect Imaging: Simulation And Reconstruction, Sang Hyeb Lee May 2015

Computational Framework For Small Animal Spect Imaging: Simulation And Reconstruction, Sang Hyeb Lee

Doctoral Dissertations

Small animal Single Photon Emission Computed Tomography (SPECT) has been an invaluable asset in biomedical science since this non-invasive imaging technique allows the longitudinal studies of animal models of human diseases. However, the image degradation caused by non-stationary collimator-detector response and single photon emitting nature of SPECT makes it difficult to provide a quantitative measure of 3D radio-pharmaceutical distribution inside the patient. Moreover, this problem exacerbates when an intra-peritoneal X-ray contrast agent is injected into a mouse for low-energy radiotracers.

In this dissertation, we design and develop a complete computational framework for the entire SPECT scan procedure from the radio-pharmaceutical …


Gate Monte Carlo Simulations In A Cloud Computing Environment, Blake Austin Rowedder Aug 2014

Gate Monte Carlo Simulations In A Cloud Computing Environment, Blake Austin Rowedder

UNLV Theses, Dissertations, Professional Papers, and Capstones

The GEANT4-based GATE is a unique and powerful Monte Carlo (MC) platform, which provides a single code library allowing the simulation of specific medical physics applications, e.g. PET, SPECT, CT, radiotherapy, and hadron therapy. However, this rigorous yet flexible platform is used only sparingly in the clinic due to its lengthy calculation time. By accessing the powerful computational resources of a cloud computing environment, GATE's runtime can be significantly reduced to clinically feasible levels without the sizable investment of a local high performance cluster. This study investigated a reliable and efficient execution of GATE MC simulations using a commercial cloud …