Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Simulation

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 30 of 63

Full-Text Articles in Computer Engineering

An End-To-End Trainable Method For Generating And Detecting Fiducial Markers, J Brennan Peace Aug 2020

An End-To-End Trainable Method For Generating And Detecting Fiducial Markers, J Brennan Peace

Theses, Dissertations, and Student Research from Electrical & Computer Engineering

Existing fiducial markers are designed for efficient detection and decoding. The methods are computationally efficient and capable of demonstrating impressive results, however, the markers are not explicitly designed to stand out in natural environments and their robustness is difficult to infer from relatively limited analysis. Worsening performance in challenging image capture scenarios - such as poorly exposed images, motion blur, and off-axis viewing - sheds light on their limitations. The method introduced in this work is an end-to-end trainable method for designing fiducial markers and a complimentary detector. By introducing back-propagatable marker augmentation and superimposition into training, the method learns to generate ...


Evaluating Driving Performance Of A Novel Behavior Planning Model On Connected Autonomous Vehicles, Keyur Shah May 2020

Evaluating Driving Performance Of A Novel Behavior Planning Model On Connected Autonomous Vehicles, Keyur Shah

Honors Scholar Theses

Many current algorithms and approaches in autonomous driving attempt to solve the "trajectory generation" or "trajectory following” problems: given a target behavior (e.g. stay in the current lane at the speed limit or change lane), what trajectory should the vehicle follow, and what inputs should the driving agent apply to the throttle and brake to achieve this trajectory? In this work, we instead focus on the “behavior planning” problem—specifically, should an autonomous vehicle change lane or keep lane given the current state of the system?

In addition, current theory mainly focuses on single-vehicle systems, where vehicles do not ...


Efficient Elevator Algorithm, Sean M. Toll, Owen Barbour, Carl Edwards, Daniel Nichols, Austin Day May 2020

Efficient Elevator Algorithm, Sean M. Toll, Owen Barbour, Carl Edwards, Daniel Nichols, Austin Day

Chancellor’s Honors Program Projects

No abstract provided.


The Trolley Problem In Virtual Reality, Jungsu Pak, Ariane Guirguis, Nicholas Mirchandani, Scott Cummings, Uri Maoz Dec 2019

The Trolley Problem In Virtual Reality, Jungsu Pak, Ariane Guirguis, Nicholas Mirchandani, Scott Cummings, Uri Maoz

Student Scholar Symposium Abstracts and Posters

Would people react to the Trolley problem differently based on the medium? Immersive Virtual Reality Driving Simulator was used to examine participants respond to the trolley problem in a realistic and controlled simulated environment.


Domain Adaptation In Unmanned Aerial Vehicles Landing Using Reinforcement Learning, Pedro Lucas Franca Albuquerque Dec 2019

Domain Adaptation In Unmanned Aerial Vehicles Landing Using Reinforcement Learning, Pedro Lucas Franca Albuquerque

Computer Science and Engineering: Theses, Dissertations, and Student Research

Landing an unmanned aerial vehicle (UAV) on a moving platform is a challenging task that often requires exact models of the UAV dynamics, platform characteristics, and environmental conditions. In this thesis, we present and investigate three different machine learning approaches with varying levels of domain knowledge: dynamics randomization, universal policy with system identification, and reinforcement learning with no parameter variation. We first train the policies in simulation, then perform experiments both in simulation, making variations of the system dynamics with wind and friction coefficient, then perform experiments in a real robot system with wind variation. We initially expected that providing ...


A Collaborative Visual Localization Scheme For A Low-Cost Heterogeneous Robotic Team With Non-Overlapping Perspectives, Benjamin Abruzzo, David Cappelleri, Philippos Mordohai Nov 2019

A Collaborative Visual Localization Scheme For A Low-Cost Heterogeneous Robotic Team With Non-Overlapping Perspectives, Benjamin Abruzzo, David Cappelleri, Philippos Mordohai

West Point Research Papers

This paper presents and evaluates a relative localization scheme for a heterogeneous team of low-cost mobile robots. An error-state, complementary Kalman Filter was developed to fuse analytically-derived uncertainty of stereoscopic pose measurements of an aerial robot, made by a ground robot, with the inertial/visual proprioceptive measurements of both robots. Results show that the sources of error, image quantization, asynchronous sensors, and a non-stationary bias, were sufficiently modeled to estimate the pose of the aerial robot. In both simulation and experiments, we demonstrate the proposed methodology with a heterogeneous robot team, consisting of a UAV and a UGV tasked with ...


A Simulation Tool For Evaluating The Environmental Impacts Of Management Scenarios For Modern Broiler Production Systems, Martin Andrew Christie Aug 2019

A Simulation Tool For Evaluating The Environmental Impacts Of Management Scenarios For Modern Broiler Production Systems, Martin Andrew Christie

Theses and Dissertations

The purpose of this work is to provide a simulation tool that allows broiler production practitioners and researchers to simulate the effects of farm design and management practices on resource consumption and environmental impacts. This tool allows the user to design unique farms and simulates on farm processes required to raise broiler chicks to a marketable age. The use can input data such as farm location, broiler breed, flock size, ration type, barn dimensions, and climate control equipment specifications. The algorithms used to simulate broiler breed specific feed intake, broiler weight gain, and other on farm processes such as heating ...


Modeling Of Complex Parts For Industrial Waterjet Cleaning, Braden James May 2019

Modeling Of Complex Parts For Industrial Waterjet Cleaning, Braden James

Theses and Dissertations

Industrial high-pressure waterjet cleaning is common to many industries. The modeling in this paper functions inside a collaborative robotic framework for high mix, low volume processes where human robot collaboration is beneficial. Automation of pressure washing is desirable for economic and ergonomic reasons. An automated cleaning system needs path simulation and analysis to give the operator insight into the predicted cleaning performance of the system. In this paper, ablation, the removal of a substrate coating by waterjet, is modeled for robotic cleaning operations. The model is designed to work with complex parts often found in spray cleaning operations, namely parts ...


Virtual Reality And Analysis Framework For Studying Different Layout Designs, Madison Glines Jan 2019

Virtual Reality And Analysis Framework For Studying Different Layout Designs, Madison Glines

Browse all Theses and Dissertations

This thesis describes the tools for studying different design prototypes. The goal was to develop effective tools to study these designs using a data-driven approach. “Proof of concept” experiments were conducted, in which participants were allowed to interact with a virtual environment depicting different designs as data pertaining to their virtual location and orientation was recorded for later analysis. The designs included “flat” store racks, as opposed to racks with more varied shapes, as well as “curved” racks. Focus of the design studies was to assist in identifying optimal locations for different product types. The automated data collection mechanisms required ...


Personal Universes: A Solution To The Multi-Agent Value Alignment Problem, Roman V. Yampolskiy Jan 2019

Personal Universes: A Solution To The Multi-Agent Value Alignment Problem, Roman V. Yampolskiy

Faculty Scholarship

AI Safety researchers attempting to align values of highly capable intelligent systems with those of humanity face a number of challenges including personal value extraction, multi-agent value merger and finally in-silico encoding. State-of-the-art research in value alignment shows difficulties in every stage in this process, but merger of incompatible preferences is a particularly difficult challenge to overcome. In this paper we assume that the value extraction problem will be solved and propose a possible way to implement an AI solution which optimally aligns with individual preferences of each user. We conclude by analyzing benefits and limitations of the proposed approach.


Agent-Based Modeling And Simulation Approaches In Stem Education Research, Shanna R. Simpson-Singleton, Xiangdong Che Jan 2019

Agent-Based Modeling And Simulation Approaches In Stem Education Research, Shanna R. Simpson-Singleton, Xiangdong Che

Journal of International Technology and Information Management

The development of best practices that deliver quality STEM education to all students, while minimizing achievement gaps, have been solicited by several national agencies. ABMS is a feasible approach to provide insight into global behavior based upon the interactions amongst agents and environments. In this review, we systematically surveyed several modeling and simulation approaches and discussed their applications to the evaluation of relevant theories in STEM education. It was found that ABMS is optimal to simulate STEM education hypotheses, as ABMS will sensibly present emergent theories and causation in STEM education phenomena if the model is properly validated and calibrated.


Modeling And Simulation Methodologies For Spinal Cord Stimulation., Saliya Kumara Kirigeeganage Dec 2018

Modeling And Simulation Methodologies For Spinal Cord Stimulation., Saliya Kumara Kirigeeganage

Electronic Theses and Dissertations

The use of neural prostheses to improve health of paraplegics has been a prime interest of neuroscientists over the last few decades. Scientists have performed experiments with spinal cord stimulation (SCS) to enable voluntary motor function of paralyzed patients. However, the experimentation on the human spinal cord is not a trivial task. Therefore, modeling and simulation techniques play a significant role in understanding the underlying concepts and mechanics of the spinal cord stimulation. In this work, simulation and modeling techniques related to spinal cord stimulation were investigated. The initial work was intended to visualize the electric field distribution patterns in ...


A Scalable, Chunk-Based Slicer For Cooperative 3d Printing, Jace J. Mcpherson Dec 2018

A Scalable, Chunk-Based Slicer For Cooperative 3d Printing, Jace J. Mcpherson

Computer Science and Computer Engineering Undergraduate Honors Theses

Cooperative 3D printing is an emerging technology that aims to increase the 3D printing speed and to overcome the size limit of the printable object by having multiple mobile 3D printers (printhead-carrying mobile robots) work together on a single print job on a factory floor. It differs from traditional layer-by-layer 3D printing due to requiring multiple mobile printers to work simultaneously without interfering with each other. Therefore, a new approach for slicing a digital model and generating commands for the mobile printers is needed, which has not been discussed in literature before. We propose a chunk-by-chunk based slicer that divides ...


The 3d Abstract Tile Assembly Model Is Intrinsically Universal, Aaron Koch, Daniel Hader, Matthew J. Patitz May 2018

The 3d Abstract Tile Assembly Model Is Intrinsically Universal, Aaron Koch, Daniel Hader, Matthew J. Patitz

Computer Science and Computer Engineering Undergraduate Honors Theses

In this paper, we prove that the three-dimensional abstract Tile Assembly Model (3DaTAM) is intrinsically universal. This means that there is a universal tile set in the 3DaTAM which can be used to simulate any 3DaTAM system. This result adds to a body of work on the intrinsic universality of models of self-assembly, and is specifically motivated by a result in FOCS 2016 showing that any intrinsically universal tile set for the 2DaTAM requires nondeterminism (i.e. undirectedness) even when simulating directed systems. To prove our result we have not only designed, but also fully implemented what we believe to ...


Implementation Of Unmanned Aerial Vehicles Reporting Plume Cloud Concentration Values In A 3d Simulation Environment, Emily Catherine Novak Jan 2018

Implementation Of Unmanned Aerial Vehicles Reporting Plume Cloud Concentration Values In A 3d Simulation Environment, Emily Catherine Novak

Browse all Theses and Dissertations

Unmanned aerial vehicles, or UAVs, have the potential to vastly improve plume cloud tracking at low cost. Plume clouds can be produced from blast mining, chemical warfare, unintended man-made disasters, and natural causes. This thesis provides implementation of the capability to simulate a 3D environment in which UAVs are individually controlled and each report a plume's concentration value at a specific location. It leverages existing industry standard technologies, including the PX4 autopilot system, the Gazebo simulation environment, the Robot Operating System (ROS), and QGroundControl. The provided system integrates the existing tools with a plume model plug-in that provides simulated ...


Green Roof Policy Optimization Algorithms And Microsimulations Benefits And Downsides Of Green Roof Incentives And Mandates In San Francisco, Harrison Freund Jan 2018

Green Roof Policy Optimization Algorithms And Microsimulations Benefits And Downsides Of Green Roof Incentives And Mandates In San Francisco, Harrison Freund

Honors Theses at the University of Iowa

As the 21st Century progresses, developers are becoming more aware of their environmental footprint. As the Green Economy slowly gains its footing, developers will be expected to change current building practices to reflect the increasing demand to adapt to sustainability challenges. One such methodology used by LEED to evaluate the sustainability of a building is the implementation of a green roof, the installment of vegetation on the top of a building. There are many socioecological benefits that justify the implementation of a green roof, which explain why in recent years municipalities have enacted new policies to mandate or incentivize their ...


Design And Implementation Of A Stand-Alone Tool For Metabolic Simulations, Milad Ghiasi Rad Dec 2017

Design And Implementation Of A Stand-Alone Tool For Metabolic Simulations, Milad Ghiasi Rad

Computer Science and Engineering: Theses, Dissertations, and Student Research

In this thesis, we present the design and implementation of a stand-alone tool for metabolic simulations. This system is able to integrate custom-built SBML models along with external user’s input information and produces the estimation of any reactants participating in the chain of the reactions in the provided model, e.g., ATP, Glucose, Insulin, for the given duration using numerical analysis and simulations. This tool offers the food intake arguments in the calculations to consider the personalized metabolic characteristics in the simulations. The tool has also been generalized to take into consideration of temporal genomic information and be flexible ...


Safe At Any Speed: A Simulation-Based Test Harness For Autonomous Vehicles, Houssam Abbas, Matthew O'Kelly, Alena Rodionova, Rahul Mangharam Oct 2017

Safe At Any Speed: A Simulation-Based Test Harness For Autonomous Vehicles, Houssam Abbas, Matthew O'Kelly, Alena Rodionova, Rahul Mangharam

Real-Time and Embedded Systems Lab (mLAB)

The testing of Autonomous Vehicles (AVs) requires driving the AV billions of miles under varied scenarios in order to find bugs, accidents and otherwise inappropriate behavior. Because driving a real AV that many miles is too slow and costly, this motivates the use of sophisticated `world simulators', which present the AV's perception pipeline with realistic input scenes, and present the AV's control stack with realistic traffic and physics to which to react. Thus the simulator is a crucial piece of any CAD toolchain for AV testing. In this work, we build a test harness for driving an arbitrary ...


Integrated Environment And Proximity Sensing For Uav Applications, Shawn S. Brackett Aug 2017

Integrated Environment And Proximity Sensing For Uav Applications, Shawn S. Brackett

Electronic Theses and Dissertations

As Unmanned Aerial Vehicle (UAV), or “drone” applications expand, new methods for sensing, navigating and avoiding obstacles need to be developed. The project applies an Extended Kalman Filter (EKF) to a simulated quadcopter vehicle though Matlab in order to estimate not only the vehicle state but the world state around the vehicle. The EKF integrates multiple sensor readings from range sensors, IMU sensors, and radiation sensors and combines this information to optimize state estimates. The result is an estimated world map to be used in vehicle navigation and obstacle avoidance.

The simulation handles the physics behind the vehicle flight. As ...


On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster Jun 2017

On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster

Russell C. Hardie

We describe a numerical wave propagation method for simulating long range imaging of an extended scene under anisoplanatic conditions. Our approach computes an array of point spread functions (PSFs) for a 2D grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. To validate the simulation we compare simulated outputs with the theoretical anisoplanatic tilt correlation and differential tilt variance. This is in addition to comparing the long- and short-exposure PSFs, and isoplanatic angle. Our validation analysis shows an ...


On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster May 2017

On The Simulation And Mitigation Of Anisoplanatic Optical Turbulence For Long Range Imaging, Russell C. Hardie, Daniel A. Lemaster

Electrical and Computer Engineering Faculty Publications

We describe a numerical wave propagation method for simulating long range imaging of an extended scene under anisoplanatic conditions. Our approach computes an array of point spread functions (PSFs) for a 2D grid on the object plane. The PSFs are then used in a spatially varying weighted sum operation, with an ideal image, to produce a simulated image with realistic optical turbulence degradation. To validate the simulation we compare simulated outputs with the theoretical anisoplanatic tilt correlation and differential tilt variance. This is in addition to comparing the long- and short-exposure PSFs, and isoplanatic angle. Our validation analysis shows an ...


System Identification Of A Circulation Control Unmanned Aerial Vehicle, Mohammed Agha Jan 2017

System Identification Of A Circulation Control Unmanned Aerial Vehicle, Mohammed Agha

Electronic Theses and Dissertations

The advancement in automation and sensory systems in recent years has led to an increase the demand of UAV missions. Due to this increase in demand, the research community has gained interest in investigating UAV performance enhancing systems. Circulation Control (CC), which is an active control flow method used to enhance UAV lift, is a performance enhancing system currently studied. In prior research, experimental studies have shown that Circulation Control wings (CCW) implemented on class-I UAVs can reduce take-off distance by 54%. Wind tunnel tests reveal that CC improves aircraft payload capabilities through lift enhancement. Increasing aircraft payload capabilities causes ...


An Application Of The Universal Verification Methodology, Rui Ma Aug 2016

An Application Of The Universal Verification Methodology, Rui Ma

Masters Theses

The Universal Verification Methodology (UVM) package is an open-source SystemVerilog library, which is used to set up a class-based hierarchical testbench. UVM testbenches improve the reusability of Verilog testbenches. Direct Memory Access (DMA) plays an important role in modern computer architecture. When using DMA to transfer data between a host machine and field-programmable gate array (FPGA) accelerator, a modularized DMA core on the FPGA frees the host side Central Processing Unit(CPU) during the transfer, helps to save FPGA resources, and enhances performance. Verifying the functionality of a DMA core is essential before mapping it to the FPGA. In this ...


A Simulation-Based Layered Framework Framework For The Development Of Collaborative Autonomous Systems, Ioannis Sakiotis Jul 2016

A Simulation-Based Layered Framework Framework For The Development Of Collaborative Autonomous Systems, Ioannis Sakiotis

Computational Modeling and Simulation Engineering Theses & Dissertations

The purpose of this thesis is to introduce a simulation-based software framework that facilitates the development of collaborative autonomous systems. Significant commonalities exist in the design approaches of both collaborative and autonomous systems, mirroring the sense, plan, act paradigm, and mostly adopting layered architectures. Unfortunately, the development of such systems is intricate and requires low-level interfacing which significantly detracts from development time. Frameworks for the development of collaborative and autonomous systems have been developed but are not flexible and center on narrow ranges of applications and platforms. The proposed framework utilizes an expandable layered structure that allows developers to define ...


Advances In Repurposing And Recycling Of Post-Vehicle-Application Lithium-Ion Batteries, Charles R. Standridge, Lindsay Corneal, Nicholas Baine May 2016

Advances In Repurposing And Recycling Of Post-Vehicle-Application Lithium-Ion Batteries, Charles R. Standridge, Lindsay Corneal, Nicholas Baine

Mineta Transportation Institute Publications

Increased electrification of vehicles has increased the use of lithium-ion batteries for energy storage, and raised the issue of what to do with post-vehicle-application batteries. Three possibilities have been identified: 1) remanufacturing for intended reuse in vehicles; 2) repurposing for non-vehicle, stationary storage applications; and 3) recycling, extracting the precious metals, chemicals and other byproducts. Advances in repurposing and recycling are presented, along with a mathematical model that forecasts the manufacturing capacity needed for remanufacturing, repurposing, and recycling. Results obtained by simulating the model show that up to a 25% reduction in the need for new batteries can be achieved ...


Zion File System Simulator, Robert Adams, Frederic Paladin Feb 2016

Zion File System Simulator, Robert Adams, Frederic Paladin

Funded Articles

File systems are fundamental for computers and devices with data storage units. They allow operating systems to understand and organize streams of bytes and obtain readable files from them. There are numerous file systems available in the industry, all with their own unique features. Understanding how these file systems work is essential for computer science students, but their complex nature can be difficult and challenging to grasp, especially for students at the beginning of their career. The Zion File System Simulator was designed with this in mind. Zion is a teaching and experimenting tool, in the form of a small ...


3d Immersive Visualization: Expanding Human Sensation, Megan Davis, Francisco Gonzalez, Connor Waters Jan 2016

3d Immersive Visualization: Expanding Human Sensation, Megan Davis, Francisco Gonzalez, Connor Waters

Capstone Design Expo Posters

Unmet Need: The constant push for better and more interactive data visualization aids: the Oculus Rift replaced a two-dimensional fixed monitor with head tracking and a three-dimensional virtual space to explore; the Novint Falcon replaces two-dimensional pointing tools with a haptic sensor with force feedback and three degrees of axial freedom.

Deliverables: A demonstration of the technologies involved, in the form of an Oculus- and Falconenabled physical simulation of a room containing several objects that can be handled and manipulated in three dimensions.

Constraints: The hardware is expensive and difficult to acquire, and it requires a beefy computer to run ...


Cepsim: Modelling And Simulation Of Complex Event Processing Systems In Cloud Environments, Wilson A. Higashino, Miriam Am Capretz, Luiz F. Bittencourt Jan 2016

Cepsim: Modelling And Simulation Of Complex Event Processing Systems In Cloud Environments, Wilson A. Higashino, Miriam Am Capretz, Luiz F. Bittencourt

Electrical and Computer Engineering Publications

The emergence of Big Data has had profound impacts on how data are stored and processed. As technologies created to process continuous streams of data with low latency, Complex Event Processing (CEP) and Stream Processing (SP) have often been related to the Big Data velocity dimension and used in this context. Many modern CEP and SP systems leverage cloud environments to provide the low latency and scalability required by Big Data applications, yet validating these systems at the required scale is a research problem per se. Cloud computing simulators have been used as a tool to facilitate reproducible and repeatable ...


Campus-Wide Integrated Building Energy Simulation, Willy Bernal, Madhur Behl, Truong X. Nghiem, Rahul Mangharam Dec 2015

Campus-Wide Integrated Building Energy Simulation, Willy Bernal, Madhur Behl, Truong X. Nghiem, Rahul Mangharam

Real-Time and Embedded Systems Lab (mLAB)

Effective energy management for large campus facilities is becoming increasingly complex as modern heating and cooling systems comprise of several hundred subsystems interconnected to each other. Building energy simulators like EnergyPlus are exceedingly good at modeling a single building equipped with a standalone HVAC equipment. However, the ability to simulate a large campus and to control the dynamics and interactions of the subsystems is limited or missing altogether. In this paper, we use the Matlab-EnergyPlus MLE+ tool we developed, to extend the capability of EnergyPlus to co-simulate a campus with multiple buildings connected to a chilled water distribution to a ...


Computational Framework For Small Animal Spect Imaging: Simulation And Reconstruction, Sang Hyeb Lee May 2015

Computational Framework For Small Animal Spect Imaging: Simulation And Reconstruction, Sang Hyeb Lee

Doctoral Dissertations

Small animal Single Photon Emission Computed Tomography (SPECT) has been an invaluable asset in biomedical science since this non-invasive imaging technique allows the longitudinal studies of animal models of human diseases. However, the image degradation caused by non-stationary collimator-detector response and single photon emitting nature of SPECT makes it difficult to provide a quantitative measure of 3D radio-pharmaceutical distribution inside the patient. Moreover, this problem exacerbates when an intra-peritoneal X-ray contrast agent is injected into a mouse for low-energy radiotracers.

In this dissertation, we design and develop a complete computational framework for the entire SPECT scan procedure from the radio-pharmaceutical ...