Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Computer Engineering

Hardware-Software Co-Design, Acceleration And Prototyping Of Control Algorithms On Reconfigurable Platforms, Desta Kumsa Edosa Dec 2012

Hardware-Software Co-Design, Acceleration And Prototyping Of Control Algorithms On Reconfigurable Platforms, Desta Kumsa Edosa

UNLV Theses, Dissertations, Professional Papers, and Capstones

Differential equations play a significant role in many disciplines of science and engineering. Solving and implementing Ordinary Differential Equations (ODEs) and partial Differential Equations (PDEs) effectively are very essential as most complex dynamic systems are modeled based on these equations. High Performance Computing (HPC) methodologies are required to compute and implement complex and data intensive applications modeled by differential equations at higher speed. There are, however, some challenges and limitations in implementing dynamic system, modeled by non-linear ordinary differential equations, on digital hardware. Modeling an integrator involves data approximation which results in accuracy error if data values are not considered …


Air: Adaptive Dynamic Precision Iterative Refinement, Jun Kyu Lee Aug 2012

Air: Adaptive Dynamic Precision Iterative Refinement, Jun Kyu Lee

Doctoral Dissertations

In high performance computing, applications often require very accurate solutions while minimizing runtimes and power consumption. Improving the ratio of the number of logic gates implementing floating point arithmetic operations to the total number of logic gates enables greater efficiency, potentially with higher performance and lower power consumption. Software executing on the fixed hardware in Von-Neuman architectures faces limitations on improving this ratio, since processors require extensive supporting logic to fetch and decode instructions while employing arithmetic units with statically defined precision. This dissertation explores novel approaches to improve computing architectures for linear system applications not only by designing application-specific …


Low-Cost Stereo Vision On An Fpga, Chris A. Murphy, Daniel Lindquist, Ann Marie Rynning, Thomas Cecil, Sarah Leavitt, Mark L. Chang Jul 2012

Low-Cost Stereo Vision On An Fpga, Chris A. Murphy, Daniel Lindquist, Ann Marie Rynning, Thomas Cecil, Sarah Leavitt, Mark L. Chang

Mark L. Chang

We present a low-cost stereo vision implementation suitable for use in autonomous vehicle applications and designed with agricultural applications in mind. This implementation utilizes the Census transform algorithm to calculate depth maps from a stereo pair of automotive-grade CMOS cameras. The final prototype utilizes commodity hardware, including a Xilinx Spartan-3 FPGA, to process 320times240 pixel images at greater than 150 frames per second and deliver them via a USB 2.0 interface.


Extending The Hybridthread Smp Model For Distributed Memory Systems, Eugene Anthony Cartwright Iii May 2012

Extending The Hybridthread Smp Model For Distributed Memory Systems, Eugene Anthony Cartwright Iii

Graduate Theses and Dissertations

Memory Hierarchy is of growing importance in system design today. As Moore's Law allows system designers to include more processors within their designs, data locality becomes a priority. Traditional multiprocessor systems on chip (MPSoC) experience difficulty scaling as the quantity of processors increases. This challenge is common behavior of memory accesses in a shared memory environment and causes a decrease in memory bandwidth as processor numbers increase. In order to provide the necessary levels of scalability, the computer architecture community has sought to decentralize memory accesses by distributing memory throughout the system. Distributed memory offers greater bandwidth due to decoupled …


Floating-Point Divide And Square Root For Efficient Fpga Implementation Of Image And Signal Processing Algorithms, Xiaojun Wang, Miriam Leeser Apr 2012

Floating-Point Divide And Square Root For Efficient Fpga Implementation Of Image And Signal Processing Algorithms, Xiaojun Wang, Miriam Leeser

Miriam Leeser

Division and square root are important operations in any high performance signal processing applications. We have implemented floating point division and square root based on Taylor series for the variable precision floating point library developed at the Reconfigurable Computing Laboratory at Northeastern. Our result shows that they are very well suited to FPGA implementations, and lead to a good tradeoff of area and latency. We implemented a floating-point K-means clustering algorithm and applied it to multispectral satellite images. The mean update is moved from host to FPGA hardware with the new fp_div module to reduce the communication between host and …


Floating Point Division And Square Root And The Applications, Xiaojun Wang, Miriam Leeser Apr 2012

Floating Point Division And Square Root And The Applications, Xiaojun Wang, Miriam Leeser

Miriam Leeser

Division and square root are important operations in many high performance signal processing applications. We have implemented floating point division and square root based on Taylor series for the variable precision floating point library developed at the Reconfigurable Computing Laboratory at Northeastern. Our result shows that they are very well suited to FPGA implementations, and lead to a good tradeoff of area and latency. We implemented a floating-point K-means clustering algorithm and applied it to multispectral satellite images. The mean update is moved from host to FPGA hardware with the new fp_div module to reduce the communication between host and …