Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Computer Engineering

Towards Semantic Integration Of Machine Vision Systems To Aid Manufacturing Event Understanding, Kaishu Xia, Clint Saidy, Max Kirkpatrick, Noble Anumbe, Amit Sheth, Ramy Harik Jun 2021

Towards Semantic Integration Of Machine Vision Systems To Aid Manufacturing Event Understanding, Kaishu Xia, Clint Saidy, Max Kirkpatrick, Noble Anumbe, Amit Sheth, Ramy Harik

Publications

A manufacturing paradigm shift from conventional control pyramids to decentralized, service-oriented, and cyber-physical systems (CPSs) is taking place in today’s 4th industrial revolution. Generally accepted roles and implementation recipes of cyber systems are expected to be standardized in the future of manufacturing industry. The authors intend to develop a novel CPS-enabled control architecture that accommodates: (1) intelligent information systems involving domain knowledge, empirical model, and simulation; (2) fast and secured industrial communication networks; (3) cognitive automation by rapid signal analytics and machine learning (ML) based feature extraction; (4) interoperability between machine and human. Semantic integration of process indicators is fundamental …


Human-Robot Collaboration Enabled By Real-Time Vision Tracking, Travis Deegan Jan 2021

Human-Robot Collaboration Enabled By Real-Time Vision Tracking, Travis Deegan

Electronic Theses and Dissertations

The number of robotic systems in the world is growing rapidly. However, most industrial robots are isolated in caged environments for the safety of users. There is an urgent need for human-in-the-loop collaborative robotic systems since robots are very good at performing precise and repetitive tasks but lack the cognitive ability and soft skills of humans. To fill this need, a key challenge is how to enable a robot to interpret its human co-worker’s motion and intention. This research addresses this challenge by developing a collaborative human-robot interface via innovations in computer vision, robotics, and system integration techniques. Specifically, this …


Control Of A Powered Ankle-Foot Prosthesis: From Perception To Impedance Modulation, Guilherme Aramizo Ribeiro Jan 2017

Control Of A Powered Ankle-Foot Prosthesis: From Perception To Impedance Modulation, Guilherme Aramizo Ribeiro

Dissertations, Master's Theses and Master's Reports

Active ankle prostheses controllers are demonstrating gaining smart features to improve the safety and comfort offor users. The perception of user intention to modulate the ankle dynamics is a well-known example of such feature. But not much work focused on the perception of the environment, nor how the environment should be included in the mechanical design and control of the prosthesisprostheses. The proposed work aims to improve the feasibility of integrate the environment perception integration intoto the prostheses controllersler, and to define the desired ankle dynamics, as mechanical impedance, duringof the human walk on different environmental settings. As a preliminary …


Robust Course-Boundary Extraction Algorithms For Autonomous Vehicles, Chris Roman, Charles Reinholtz Jan 2013

Robust Course-Boundary Extraction Algorithms For Autonomous Vehicles, Chris Roman, Charles Reinholtz

Christopher N. Roman

Practical autonomous robotic vehicles require dependable methods for accurately identifying course or roadway boundaries. The authors have developed a method to reliably extract the boundary line using simple dynamic thresholding, noise filtering, and blob removal. This article describes their efforts to apply this procedure in developing an autonomous vehicle.


Robust Course-Boundary Extraction Algorithms For Autonomous Vehicles, Chris Roman, Charles Reinholtz Nov 1998

Robust Course-Boundary Extraction Algorithms For Autonomous Vehicles, Chris Roman, Charles Reinholtz

Graduate School of Oceanography Faculty Publications

Practical autonomous robotic vehicles require dependable methods for accurately identifying course or roadway boundaries. The authors have developed a method to reliably extract the boundary line using simple dynamic thresholding, noise filtering, and blob removal. This article describes their efforts to apply this procedure in developing an autonomous vehicle.