Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Computer Engineering

Gene Order Phylogeny Of The Genus Prochlorococcus, Haiwei Luo, Jian Shi, William Arndt, Jijun Tang, Robert Friedman Dec 2008

Gene Order Phylogeny Of The Genus Prochlorococcus, Haiwei Luo, Jian Shi, William Arndt, Jijun Tang, Robert Friedman

Faculty Publications

Background
Using gene order as a phylogenetic character has the potential to resolve previously unresolved species relationships. This character was used to resolve the evolutionary history within the genus Prochlorococcus, a group of marine cyanobacteria.

Methodology/Principal Findings
Orthologous gene sets and their genomic positions were identified from 12 species of Prochlorococcus and 1 outgroup species of Synechococcus. From this data, inversion and breakpoint distance-based phylogenetic trees were computed by GRAPPA and FastME. Statistical support of the resulting topology was obtained by application of a 50% jackknife resampling technique. The result was consistent and congruent with nucleotide sequence-based and gene-content based …


Improving Reversal Median Computation Using Commuting Reversals And Cycle Information, William Arndt, Jijun Tang Nov 2008

Improving Reversal Median Computation Using Commuting Reversals And Cycle Information, William Arndt, Jijun Tang

Faculty Publications

In the past decade, genome rearrangements have attracted increasing attention from both biologists and computer scientists as a new type of data for phylogenetic analysis. Methods for reconstructing phylogeny from genome rearrangements include distance-based methods, MCMC methods, and direct optimization methods. The latter, pioneered by Sankoff and extended with the software suites GRAPPA and MGR, is the most accurate approach, but is very limited due to the difficulty of its scoring procedure—it must solve multiple instances of the reversal median problem to compute the score of a given tree. The reversal median problem is known to be NP-hard and all …


Multi-Break Rearrangements And Breakpoint Re-Uses: From Circular To Linear Genomes, Max A. Alekseyev Nov 2008

Multi-Break Rearrangements And Breakpoint Re-Uses: From Circular To Linear Genomes, Max A. Alekseyev

Faculty Publications

Multi-break rearrangements break a genome into multiple fragments and further glue them together in a new order. While 2-break rearrangements represent standard reversals, fusions, fissions, and translocations, 3-break rearrangements represent a natural generalization of transpositions. Alekseyev and Pevzner (2007a, 2008a) studied multi-break rearrangements in circular genomes and further applied them to the analysis of chromosomal evolution in mammalian genomes. In this paper, we extend these results to the more difficult case of linear genomes. In particular, we give lower bounds for the rearrangement distance between linear genomes and for the breakpoint re-use rate as functions of the number and proportion …


Phylogenetic Reconstruction From Transpositions, Feng Yue, Meng Zhang, Jijun Tang Sep 2008

Phylogenetic Reconstruction From Transpositions, Feng Yue, Meng Zhang, Jijun Tang

Faculty Publications

Background
Because of the advent of high-throughput sequencing and the consequent reduction in the cost of sequencing, many organisms have been completely sequenced and most of their genes identified. It thus has become possible to represent whole genomes as ordered lists of gene identifiers and to study the rearrangement of these entities through computational means. As a result, genome rearrangement data has attracted increasing attentions from both biologists and computer scientists as a new type of data for phylogenetic analysis. The main events of genome rearrangements include inversions, transpositions and transversions. To date, GRAPPA and MGR are the most accurate …


Gene Rearrangement Analysis And Ancestral Order Inference From Chloroplast Genomes With Inverted Repeat, Feng Yue, Liying Cui, Claude W. Depamphilis, Bernard M.E. Moret, Jijun Tang Mar 2008

Gene Rearrangement Analysis And Ancestral Order Inference From Chloroplast Genomes With Inverted Repeat, Feng Yue, Liying Cui, Claude W. Depamphilis, Bernard M.E. Moret, Jijun Tang

Faculty Publications

Background
Genome evolution is shaped not only by nucleotide substitutions, but also by structural changes including gene and genome duplications, insertions, deletions and gene order rearrangements. The most popular methods for reconstructing phylogeny from genome rearrangements include GRAPPA and MGR. However these methods are limited to cases where equal gene content or few deletions can be assumed. Since conserved duplicated regions are present in many chloroplast genomes, the inference of inverted repeats is needed in chloroplast phylogeny analysis and ancestral genome reconstruction.

Results
We extend GRAPPA and develop a new method GRAPPA-IR to handle chloroplast genomes. A test of GRAPPA-IR …