Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Computer Engineering

Finite-Difference Time Domain Method For Nonorthogonal Unit-Cell Two-Dimensional Photonic Crystals, Wan Kuang, Woo J. Kim, John D. O'Brien Sep 2007

Finite-Difference Time Domain Method For Nonorthogonal Unit-Cell Two-Dimensional Photonic Crystals, Wan Kuang, Woo J. Kim, John D. O'Brien

Electrical and Computer Engineering Faculty Publications and Presentations

A finite-difference time-domain (FDTD) method based on a regular Cartesian Yee’s lattice is developed for calculating the dispersion band diagram of a 2-D photonic crystal. Unlike methods that require auxiliary difference equations or nonorthogonal grid schemes, our method uses the standard centraldifference equations and can be easily implemented in a parallel computing environment. The application of the periodic boundary condition on an angled boundary involves a split-field formulation of Maxwell’s equations. We show that the method can be applied for photonic crystals of both orthogonal and nonorthogonal unit cells. Complete and accurate bandgap information is obtained by using this FDTD …


An Emotional Mimicking Humanoid Biped Robot And Its Quantum Control Based On The Constraint Satisfaction Model, Quay Williams, Scott Bogner, Michael Kelley, Carolina Castillo, Martin Lukac, Dong Hwa Kim, Jeff S. Allen, Mathias I. Sunardi, Sazzad Hossain, Marek Perkowski May 2007

An Emotional Mimicking Humanoid Biped Robot And Its Quantum Control Based On The Constraint Satisfaction Model, Quay Williams, Scott Bogner, Michael Kelley, Carolina Castillo, Martin Lukac, Dong Hwa Kim, Jeff S. Allen, Mathias I. Sunardi, Sazzad Hossain, Marek Perkowski

Electrical and Computer Engineering Faculty Publications and Presentations

The paper presents a humanoid robot that responds to human gestures seen by a camera. The behavior of the robot can be completely deterministic as specified by a Finite State Machine that maps the sensor signals to the effector signals. This model is further extended to the constraints-satisfaction based model that links robots vision, motion, emotional behavior and planning. One way of implementing this model is to use adiabatic quantum computer which quadratically speeds-up every constraint problem and will be thus necessary to solve large problems of this type. We propose to use the remotely-connected Orion system by DWAVE Corporation.


Evolvable Reconfigurable Hardware Framework For Edge Detection, Nader I. Rafla Jan 2007

Evolvable Reconfigurable Hardware Framework For Edge Detection, Nader I. Rafla

Electrical and Computer Engineering Faculty Publications and Presentations

Systems on Reconfigurable Chips contain rich resources of logic, memory, and processor cores on the same fabric. This platform is suitable for implementation of Evolvable Reconfigurable Hardware Architectures (ERHA). It is based on the idea of combining reconfigurable Field Programmable Gate Arrays (FPGA) along with genetic algorithms (GA) to perform the reconfiguration operation. This architecture is a suitable candidate for implementation of early-processing stage operators of image processing such as filtering and edge detection. However, there are still fundamental issues need to be solved regarding the on-chip reprogramming of the logic. This paper presents a framework for implementing an evolvable …