Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Computer Engineering

Tolerance Specification Of Robot Kinematic Parameters Using An Experimental Design Technique, Y.H. Andrew Liou, Paul P. Lin, Richard R. Lindeke, Hsiang-Dih Chiang Jun 1993

Tolerance Specification Of Robot Kinematic Parameters Using An Experimental Design Technique, Y.H. Andrew Liou, Paul P. Lin, Richard R. Lindeke, Hsiang-Dih Chiang

Mechanical Engineering Faculty Publications

This paper presents the tolerance specification of robot kinematic parameters using the Taguchi method. The concept of employing inner and outer orthogonal arrays to identify the significant parameters and select the optimal tolerance range for each parameter is proposed. The performance measure based on signal-to-noise ratios (S/N) using the Taguchi method is validated by Monte Carlo simulations. Finally, a step-by-step tolerance specification methodology is developed and illustrated with a planar two-link manipulator and a five-degree-of-freedom Rhino robot.


The Application Of Neural Networks To Optimal Robot Trajectory Planning, Daniel J. Simon May 1993

The Application Of Neural Networks To Optimal Robot Trajectory Planning, Daniel J. Simon

Electrical and Computer Engineering Faculty Publications

Interpolation of minimum jerk robot joint trajectories through an arbitrary number of knots is realized using a hardwired neural network. Minimum jerk joint trajectories are desirable for their similarity to human joint movements and their amenability to accurate tracking. The resultant trajectories are numerical rather than analytic functions of time. This application formulates the interpolation problem as a constrained quadratic minimization problem over a continuous joint angle domain and a discrete time domain. Time is discretized according to the robot controller rate. The neuron outputs define the joint angles (one neuron for each discrete value of time) and the Lagrange …


Suboptimal Robot Joint Interpolation Within User-Specified Knot Tolerances, Daniel J. Simon, Can Isik May 1993

Suboptimal Robot Joint Interpolation Within User-Specified Knot Tolerances, Daniel J. Simon, Can Isik

Electrical and Computer Engineering Faculty Publications

Approximation of a desired robot path can be accomplished by interpolating a curve through a sequence of joint-space knots. A smooth interpolated trajectory can be realized by using trigonometric splines. But, sometimes the joint trajectory is not required to exactly pass through the given knots. The knots may rather be centers of tolerances near which the trajectory is required to pass. In this article, we optimize trigonometric splines through a given set of knots subject to user-specified knot tolerances. The contribution of this article is the straightforward way in which intermediate constraints (i.e., knot angles) are incorporated into the parameter …