Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 10 of 10

Full-Text Articles in Computer Engineering

Neural Control Of Hypersonic Flight Vehicle Model Via Time-Scale Decomposition With Throttle Setting Constraint, Bin Xu Dec 2012

Neural Control Of Hypersonic Flight Vehicle Model Via Time-Scale Decomposition With Throttle Setting Constraint, Bin Xu

Bin Xu

Considering the use of digital computers and samplers in the control circuitry, this paper describes the controller design in discrete time for the longitudinal dynamics of a generic hypersonic flight vehicle (HFV) with Neural Network (NN). Motivated by time-scale decomposition, the states are decomposed into slow dynamics of velocity, altitude and fast dynamics of attitude angles. By command transformation, the reference command for γ − θp − q subsystem is derived from h − γ subsystem. Furthermore, to simplify the backstepping design, we propose the controller for γ − θp − q subsystem from prediction function without virtual controller. For …


Adaptive Kriging Controller Design For Hypersonic Flight Vehicle Via Back-Stepping, Bin Xu Jan 2012

Adaptive Kriging Controller Design For Hypersonic Flight Vehicle Via Back-Stepping, Bin Xu

Bin Xu

No abstract provided.


Direct Neural Discrete Control Of Hypersonic Flight Vehicle, Bin Xu Jan 2012

Direct Neural Discrete Control Of Hypersonic Flight Vehicle, Bin Xu

Bin Xu

No abstract provided.


Adaptive Discrete-Time Controller Design With Neural Network For Hypersonic Flight Vehicle Via Back-Stepping, Bin Xu Jan 2011

Adaptive Discrete-Time Controller Design With Neural Network For Hypersonic Flight Vehicle Via Back-Stepping, Bin Xu

Bin Xu

In this article, the adaptive neural controller in discrete time is investigated for the longitudinal dynamics of a generic hypersonic flight vehicle. The dynamics are decomposed into the altitude subsystem and the velocity subsystem. The altitude subsystem is transformed into the strict-feedback form from which the discrete-time model is derived by the first-order Taylor expansion. The virtual control is designed with nominal feedback and neural network (NN) approximation via back-stepping. Meanwhile, one adaptive NN controller is designed for the velocity subsystem. To avoid the circular construction problem in the practical control, the design of coefficients adopts the upper bound instead …


Adaptive Neural Control Based On Hgo For Hypersonic Flight Vehicles, Bin Xu Jan 2011

Adaptive Neural Control Based On Hgo For Hypersonic Flight Vehicles, Bin Xu

Bin Xu

This paper describes the design of adaptive neural controller for the longitudinal dynamics of a generic hypersonic flight vehicle (HFV) which are decomposed into two functional systems, namely the altitude subsystem and the velocity subsystem. For each subsystem, one adaptive neural controller is investigated based on the normal output-feedback formulation. For the altitude subsystem, the high gain observer (HGO) is taken to estimate the unknown newly defined states. Only one neural network (NN) is employed to approximate the lumped uncertain system nonlinearity during the controller design which is considerably simpler than the ones based on back-stepping scheme with the strict-feedback …


Task Allocation For Multi-Spacecraft Cooperation Based On Estimation Of Distribution Algorithm, Bin Xu Jan 2011

Task Allocation For Multi-Spacecraft Cooperation Based On Estimation Of Distribution Algorithm, Bin Xu

Bin Xu

One two-stage task allocation strategy is proposed for multi-spacecraft cooperation during the long-range orbit transfer with two impulses. This paper focuses on the task value maximum and cost minimum optimization by assigning spacecraft to different task. At the first stage time and energy cost are considered based on the spacecraft dynamics. The optimization result is together with the target value as the factor for the task allocation model at the second stage. The optimization is processed separately in continuous and discrete time domain with estimation of distribution algorithm (EDA). Different task allocation mode is formulated and the strategy is verified …


Composite Control Based On Optimal Torque Control And Adaptive Kriging Control For The Crab Rover, Bin Xu Jan 2011

Composite Control Based On Optimal Torque Control And Adaptive Kriging Control For The Crab Rover, Bin Xu

Bin Xu

Terrainability is mostly dependant on the suspension mechanism and the control of a space rover. For the six wheeled CRAB rover, this paper presents the composite control design with torque control and adaptive Kriging control to improve the terrainability, somewhat related to minimizing heel slip. As CRAB is moving slowly, the torque control is processed by minimizing the variance of the required friction coefficient based on the static model. Adaptive Kriging control is used to track the commanded velocity. The system uncertainty is compensated by Kriging estimation based on the velocity dynamics. Experiment results with two different tires show the …


Adaptive Hypersonic Flight Control Via Back-Stepping And Kriging Estimation, Bin Xu Jan 2011

Adaptive Hypersonic Flight Control Via Back-Stepping And Kriging Estimation, Bin Xu

Bin Xu

This paper investigates the adaptive Kriging controller for the longitudinal dynamics of a generic hypersonic flight vehicle (HFV). For the altitude subsystem, the dynamics are transformed into the strict-feedback form where the backstepping scheme is employed. Considering the nonlinearity of the dynamics, the nominal feedback is included in the controller while Kriging system is designed to estimate the uncertainty. With the proposed controller, the almost surely bounded stability is guaranteed. The simulation study is presented to show the effectiveness of the proposed control approach.


Adaptive Pid Control Based On Rbf Network Approximating The Satellite Clock Thermal Model, Bin Xu Jan 2010

Adaptive Pid Control Based On Rbf Network Approximating The Satellite Clock Thermal Model, Bin Xu

Bin Xu

The accuracy o f t ime information prov ided by sate llite clock g reat ly depends on its frequency stab ili􀀁 ty, w hich is up to the stability o f the co re tempera ture. Th is paper introduces an adaptive PID control for the sate llite c lock system whose mode l is approx imated based on RBF neural netw orks. Simu lation resu lts demonstrate the va lid ity o f the proposed contro.l


An Improved Robust Projection Identification Algorithm To Manned Maneuvering Units, Bin Xu Jan 2008

An Improved Robust Projection Identification Algorithm To Manned Maneuvering Units, Bin Xu

Bin Xu

空间载人机动装置(MMU )在进行救援过程中, 其动力学参数存在很大的不确定性。为解决这一辨识问题, 本文首先推导系统关于各动力学参数的线性化模型, 然后结合该线性模型的特点, 提出了一种用于估计动力学参数的改进鲁棒投影算法, 并在理论上分析了该算法的收敛性质, 数字仿真验证了方法的有效性。