Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 17 of 17

Full-Text Articles in Computer Engineering

Protecting Return Address Integrity For Risc-V Via Pointer Authentication, Yuhe Zhao Mar 2024

Protecting Return Address Integrity For Risc-V Via Pointer Authentication, Yuhe Zhao

Masters Theses

Embedded systems based on lightweight microprocessors are becoming more prevalent in various applications. However, the security of them remains a significant challenge due to the limited resources and exposure to external threats. Especially, some of these devices store sensitive data and control critical devices, making them high-value targets for attackers. Software security is particularly important because attackers can easily access these devices on the internet and obtain control of them by injecting malware.

Return address (RA) hijacking is a common software attack technique used to compromise control flow integrity (CFI) by manipulating memory, such as return-to-libc attacks. Several methods have …


Sel4 On Risc-V - Developing High Assurance Platforms With Modular Open-Source Architectures, Michael A. Doran Jr Aug 2023

Sel4 On Risc-V - Developing High Assurance Platforms With Modular Open-Source Architectures, Michael A. Doran Jr

Masters Theses

Virtualization is now becoming an industry standard for modern embedded systems. Modern embedded systems can now support multiple applications on a single hardware platform while meeting power and cost requirements. Virtualization on an embedded system is achieved through the design of the hardware-software interface. Instruction set architecture, ISA, defines the hardware-software interface for an embedded system. At the hardware level the ISA, provides extensions to support virtualization.

In addition to an ISA that supports hypervisor extensions it is equally important to provide a hypervisor completely capable of exploiting the benefits of virtualization for securing modern embedded systems. Currently there does …


Development Of A Ppg Sensor Array As A Wearable Device For Monitoring Cardiovascular Metrics, Jose Ignacio Rodriguez-Labra Apr 2022

Development Of A Ppg Sensor Array As A Wearable Device For Monitoring Cardiovascular Metrics, Jose Ignacio Rodriguez-Labra

Masters Theses

Wearable devices with integrated sensors for tracking human vitals are widely used for a variety of applications, including exercise, wellness, and health monitoring. Photoplethysmography (PPG) sensors use pulse oximetry to measure pulse rate, cardiac cycle, oxygen saturation, and blood flow by passing a light beam of variable wavelength through the skin and measuring its reflection. A multi-channel PPG wearable system was developed to include multiple nodes of pulse oximeters, each capable of using different wavelengths of light. The system uses sensor fusion along with a machine learning model to perform feature extraction of relevant cardiovascular metrics across multiple pulse oximeters …


Hardware Acceleration In Image Stitching: Gpu Vs Fpga, Joshua David Edgcombe Jul 2021

Hardware Acceleration In Image Stitching: Gpu Vs Fpga, Joshua David Edgcombe

Masters Theses

Image stitching is a process where two or more images with an overlapping field of view are combined. This process is commonly used to increase the field of view or image quality of a system. While this process is not particularly difficult for modern personal computers, hardware acceleration is often required to achieve real-time performance in low-power image stitching solutions. In this thesis, two separate hardware accelerated image stitching solutions are developed and compared. One solution is accelerated using a Xilinx Zynq UltraScale+ ZU3EG FPGA and the other solution is accelerated using an Nvidia RTX 2070 Super GPU. The image …


A Secure Architecture For Defense Against Return Address Corruption, Grayson J. Bruner May 2021

A Secure Architecture For Defense Against Return Address Corruption, Grayson J. Bruner

Masters Theses

The advent of the Internet of Things has brought about a staggering level of inter-connectivity between common devices used every day. Unfortunately, security is not a high priority for developers designing these IoT devices. Often times the trade-off of security comes at too high of a cost in other areas, such as performance or power consumption. This is especially prevalent in resource-constrained devices, which make up a large number of IoT devices. However, a lack of security could lead to a cascade of security breaches rippling through connected devices. One of the most common attacks used by hackers is return …


Compound Effects Of Clock And Voltage Based Power Side-Channel Countermeasures, Jacqueline Lagasse Jul 2020

Compound Effects Of Clock And Voltage Based Power Side-Channel Countermeasures, Jacqueline Lagasse

Masters Theses

The power side-channel attack, which allows an attacker to derive secret information from power traces, continues to be a major vulnerability in many critical systems. Numerous countermeasures have been proposed since its discovery as a serious vulnerability, including both hardware and software implementations. Each countermeasure has its own drawback, with some of the highly effective countermeasures incurring large overhead in area and power. In addition, many countermeasures are quite invasive to the design process, requiring modification of the design and therefore additional validation and testing to ensure its accuracy. Less invasive countermeasures that do not require directly modifying the system …


A Comparative Study Of Wireless Star Networks Implemented With Current Wireless Protocols, Sizen Neupane Feb 2019

A Comparative Study Of Wireless Star Networks Implemented With Current Wireless Protocols, Sizen Neupane

Masters Theses

Wireless communication is one of the most advanced technological developments of this era. Wireless technology enables both short-range and long-range services. Today, there are several different wireless communication technologies in existence. Each has its characteristics different from another one. This thesis will implement three short-range wireless technologies in star connection and compare the performance in the wireless network.

For this thesis, the performance of three different RF protocols - a proprietary packet protocol called Enhanced ShockBurst in nRF24L01+, Bluetooth Low Energy, and a special Wi- Fi protocol ESP-Now was compared. The general concept was to establish a star network for …


Magneto-Electric Approximate Computational Framework For Bayesian Inference, Sourabh Kulkarni Oct 2017

Magneto-Electric Approximate Computational Framework For Bayesian Inference, Sourabh Kulkarni

Masters Theses

Probabilistic graphical models like Bayesian Networks (BNs) are powerful artificial-intelligence formalisms, with similarities to cognition and higher order reasoning in the human brain. These models have been, to great success, applied to several challenging real-world applications. Use of these formalisms to a greater set of applications is impeded by the limitations of the currently used software-based implementations. New emerging-technology based circuit paradigms which leverage physical equivalence, i.e., operating directly on probabilities vs. introducing layers of abstraction, promise orders of magnitude increase in performance and efficiency of BN implementations, enabling networks with millions of random variables. While majority of applications with …


Scalable High-Speed Communications For Neuromorphic Systems, Aaron Reed Young Aug 2017

Scalable High-Speed Communications For Neuromorphic Systems, Aaron Reed Young

Masters Theses

Field-programmable gate arrays (FPGA), application-specific integrated circuits (ASIC), and other chip/multi-chip level implementations can be used to implement Dynamic Adaptive Neural Network Arrays (DANNA). In some applications, DANNA interfaces with a traditional computing system to provide neural network configuration information, provide network input, process network outputs, and monitor the state of the network. The present host-to-DANNA network communication setup uses a Cypress USB 3.0 peripheral controller (FX3) to enable host-to-array communication over USB 3.0. This communications setup has to run commands in batches and does not have enough bandwidth to meet the maximum throughput requirements of the DANNA device, resulting …


Variation Aware Placement For Efficient Key Generation Using Physically Unclonable Functions In Reconfigurable Systems, Shrikant S. Vyas Nov 2016

Variation Aware Placement For Efficient Key Generation Using Physically Unclonable Functions In Reconfigurable Systems, Shrikant S. Vyas

Masters Theses

With the importance of data security at its peak today, many reconfigurable systems are used to provide security. This protection is often provided by FPGA-based encrypt/decrypt cores secured with secret keys. Physical unclonable functions (PUFs) use random manufacturing variations to generate outputs that can be used in keys. These outputs are specific to a chip and can be used to create device-tied secret keys. Due to reliability issues with PUFs, key generation with PUFs typically requires error correction techniques. This can result in substantial hardware costs. Thus, the total cost of a $n$-bit key far exceeds just the cost of …


Dividing And Conquering Meshes Within The Nist Fire Dynamics Simulator (Fds) On Multicore Computing Systems, Donald Charles Collins Dec 2015

Dividing And Conquering Meshes Within The Nist Fire Dynamics Simulator (Fds) On Multicore Computing Systems, Donald Charles Collins

Masters Theses

The National Institute for Standards and Technology (NIST) Fire Dynamics Simulator (FDS) provides a computational fluid dynamics model of a fire, which can be visualized by using NIST Smokeview (SMV). Users must create a configuration file (*.fds) that describes the environment and other characteristics of the fire scene so that the FDS software can produce the output file (*.smv) needed for visualization.The processing can be computationally intensive, often taking between several minutes and several hours to complete. In many cases, a user will create a file that is not optimized for a multicore computing system. By dividing meshes within the …


Implementation Of A Neuromorphic Development Platform With Danna, Jason Yen-Shen Chan Dec 2015

Implementation Of A Neuromorphic Development Platform With Danna, Jason Yen-Shen Chan

Masters Theses

Neuromorphic computing is the use of artificial neural networks to solve complex problems. The specialized computing field has been growing in interest during the past few years. Specialized hardware that function as neural networks can be utilized to solve specific problems unsuited for traditional computing architectures such as pattern classification and image recognition. However, these hardware platforms have neural network structures that are static, being limited to only perform a specific application, and cannot be used for other tasks. In this paper, the feasibility of a development platform utilizing a dynamic artificial neural network for researchers is discussed.


Energy Agile Cluster Communication, Muhammad Zain Mustafa Mar 2015

Energy Agile Cluster Communication, Muhammad Zain Mustafa

Masters Theses

Computing researchers have long focused on improving energy-efficiency?the amount of computation per joule? under the implicit assumption that all energy is created equal. Energy however is not created equal: its cost and carbon footprint fluctuates over time due to a variety of factors. These fluctuations are expected to in- tensify as renewable penetration increases. Thus in my work I introduce energy-agility a design concept for a platform?s ability to rapidly and efficiently adapt to such power fluctuations. I then introduce a representative application to assess energy-agility for the type of long-running, parallel, data-intensive tasks that are both common in data …


Energy Efficiency Exploration Of Coarse-Grain Reconfigurable Architecture With Emerging Nonvolatile Memory, Xiaobin Liu Mar 2015

Energy Efficiency Exploration Of Coarse-Grain Reconfigurable Architecture With Emerging Nonvolatile Memory, Xiaobin Liu

Masters Theses

With the rapid growth in consumer electronics, people expect thin, smart and powerful devices, e.g. Google Glass and other wearable devices. However, as portable electronic products become smaller, energy consumption becomes an issue that limits the development of portable systems due to battery lifetime. In general, simply reducing device size cannot fully address the energy issue.

To tackle this problem, we propose an on-chip interconnect infrastructure and pro- gram storage structure for a coarse-grained reconfigurable architecture (CGRA) with emerging non-volatile embedded memory (MRAM). The interconnect is composed of a matrix of time-multiplexed switchboxes which can be dynamically reconfigured with the …


Network-On-Chip Synchronization, Mark Buckler Nov 2014

Network-On-Chip Synchronization, Mark Buckler

Masters Theses

Technology scaling has enabled the number of cores within a System on Chip (SoC) to increase significantly. Globally Asynchronous Locally Synchronous (GALS) systems using Dynamic Voltage and Frequency Scaling (DVFS) operate each of these cores on distinct and dynamic clock domains. The main communication method between these cores is increasingly more likely to be a Network-on-Chip (NoC). Typically, the interfaces between these clock domains experience multi-cycle synchronization latencies due to their use of “brute-force” synchronizers. This dissertation aims to improve the performance of NoCs and thereby SoCs as a whole by reducing this synchronization latency.

First, a survey of NoC …


A Secure Reconfigurable System-On-Programmable-Chip Computer System, William Herbert Collins Aug 2013

A Secure Reconfigurable System-On-Programmable-Chip Computer System, William Herbert Collins

Masters Theses

A System-on-Programmable-Chip (SoPC) architecture is designed to meet two goals: to provide a role-based secure computing environment and to allow for user reconfiguration. To accomplish this, a secure root of trust is derived from a fixed architectural subsystem, known as the Security Controller. It additionally provides a dynamically configurable single point of access between applications developed by users and the objects those applications use. The platform provides a model for secrecy such that physical recovery of any one component in isolation does not compromise the system. Dual-factor authentication is used to verify users. A model is also provided for tamper …


An Fpga Based Implementation Of The Exact Stochastic Simulation Algorithm, Phani Bharadwaj Vanguri Dec 2010

An Fpga Based Implementation Of The Exact Stochastic Simulation Algorithm, Phani Bharadwaj Vanguri

Masters Theses

Mathematical and statistical modeling of biological systems is a desired goal for many years. Many biochemical models are often evaluated using a deterministic approach, which uses differential equations to describe the chemical interactions. However, such an approach is inaccurate for small species populations as it neglects the discrete representation of population values, presents the possibility of negative populations, and does not represent the stochastic nature of biochemical systems. The Stochastic Simulation Algorithm (SSA) developed by Gillespie is able to properly account for these inherent noise fluctuations. Due to the stochastic nature of the Monte Carlo simulations, large numbers of simulations …