Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Computer Engineering

Machine Learning For Omics Data Analysis., Ameni Trabelsi May 2018

Machine Learning For Omics Data Analysis., Ameni Trabelsi

Electronic Theses and Dissertations

In proteomics and metabolomics, to quantify the changes of abundance levels of biomolecules in a biological system, multiple sample analysis steps are involved. The steps include mass spectrum deconvolution and peak list alignment. Each analysis step introduces a certain degree of technical variation in the abundance levels (i.e. peak areas) of those molecules. Some analysis steps introduce technical variations that affect the peak areas of all molecules equally while others affect the peak areas of a subset of molecules with varying degrees. To correct these technical variations, some existing normalization methods simply scale the peak areas of all molecules ...


Acceleration Of K-Nearest Neighbor And Srad Algorithms Using Intel Fpga Sdk For Opencl, Liyuan Liu Mar 2018

Acceleration Of K-Nearest Neighbor And Srad Algorithms Using Intel Fpga Sdk For Opencl, Liyuan Liu

Electronic Theses and Dissertations

Field Programmable Gate Arrays (FPGAs) have been widely used for accelerating machine learning algorithms. However, the high design cost and time for implementing FPGA-based accelerators using traditional HDL-based design methodologies has discouraged users from designing FPGA-based accelerators. In recent years, a new CAD tool called Intel FPGA SDK for OpenCL (IFSO) allowed fast and efficient design of FPGA-based hardware accelerators from high level specification such as OpenCL. Even software engineers with basic hardware design knowledge could design FPGA-based accelerators. In this thesis, IFSO has been used to explore acceleration of k-Nearest-Neighbour (kNN) algorithm and Speckle Reducing Anisotropic Diffusion (SRAD) simulation ...


Optimized Multilayer Perceptron With Dynamic Learning Rate To Classify Breast Microwave Tomography Image, Chulwoo Pack Jan 2017

Optimized Multilayer Perceptron With Dynamic Learning Rate To Classify Breast Microwave Tomography Image, Chulwoo Pack

Electronic Theses and Dissertations

Most recently developed Computer Aided Diagnosis (CAD) systems and their related research is based on medical images that are usually obtained through conventional imaging techniques such as Magnetic Resonance Imaging (MRI), x-ray mammography, and ultrasound. With the development of a new imaging technology called Microwave Tomography Imaging (MTI), it has become inevitable to develop a CAD system that can show promising performance using new format of data. The platform can have a flexibility on its input by adopting Artificial Neural Network (ANN) as a classifier. Among the various phases of CAD system, we have focused on optimizing the classification phase ...


Contextualizing Observational Data For Modeling Human Performance, Viet Trinh Jan 2009

Contextualizing Observational Data For Modeling Human Performance, Viet Trinh

Electronic Theses and Dissertations

This research focuses on the ability to contextualize observed human behaviors in efforts to automate the process of tactical human performance modeling through learning from observations. This effort to contextualize human behavior is aimed at minimizing the role and involvement of the knowledge engineers required in building intelligent Context-based Reasoning (CxBR) agents. More specifically, the goal is to automatically discover the context in which a human actor is situated when performing a mission to facilitate the learning of such CxBR models. This research is derived from the contextualization problem left behind in Fernlund's research on using the Genetic Context ...


Falconet: Force-Feedback Approach For Learning From Coaching And Observation Using Natural And Experiential Training, Gary Stein Jan 2009

Falconet: Force-Feedback Approach For Learning From Coaching And Observation Using Natural And Experiential Training, Gary Stein

Electronic Theses and Dissertations

Building an intelligent agent model from scratch is a difficult task. Thus, it would be preferable to have an automated process perform this task. There have been many manual and automatic techniques, however, each of these has various issues with obtaining, organizing, or making use of the data. Additionally, it can be difficult to get perfect data or, once the data is obtained, impractical to get a human subject to explain why some action was performed. Because of these problems, machine learning from observation emerged to produce agent models based on observational data. Learning from observation uses unobtrusive and purely ...


An Adaptive Multiobjective Evolutionary Approach To Optimize Artmap Neural Networks, Assem Kaylani Jan 2008

An Adaptive Multiobjective Evolutionary Approach To Optimize Artmap Neural Networks, Assem Kaylani

Electronic Theses and Dissertations

This dissertation deals with the evolutionary optimization of ART neural network architectures. ART (adaptive resonance theory) was introduced by a Grossberg in 1976. In the last 20 years (1987-2007) a number of ART neural network architectures were introduced into the literature (Fuzzy ARTMAP (1992), Gaussian ARTMAP (1996 and 1997) and Ellipsoidal ARTMAP (2001)). In this dissertation, we focus on the evolutionary optimization of ART neural network architectures with the intent of optimizing the size and the generalization performance of the ART neural network. A number of researchers have focused on the evolutionary optimization of neural networks, but no research has ...


A Reinforcement Learning Technique For Enhancing Human Behavior Models In A Context-Based Architecture, David Aihe Jan 2008

A Reinforcement Learning Technique For Enhancing Human Behavior Models In A Context-Based Architecture, David Aihe

Electronic Theses and Dissertations

A reinforcement-learning technique for enhancing human behavior models in a context-based learning architecture is presented. Prior to the introduction of this technique, human models built and developed in a Context-Based reasoning framework lacked learning capabilities. As such, their performance and quality of behavior was always limited by what the subject matter expert whose knowledge is modeled was able to articulate or demonstrate. Results from experiments performed show that subject matter experts are prone to making errors and at times they lack information on situations that are inherently necessary for the human models to behave appropriately and optimally in those situations ...