Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Computer Engineering

Dynamic Adversarial Mining - Effectively Applying Machine Learning In Adversarial Non-Stationary Environments., Tegjyot Singh Sethi Aug 2017

Dynamic Adversarial Mining - Effectively Applying Machine Learning In Adversarial Non-Stationary Environments., Tegjyot Singh Sethi

Electronic Theses and Dissertations

While understanding of machine learning and data mining is still in its budding stages, the engineering applications of the same has found immense acceptance and success. Cybersecurity applications such as intrusion detection systems, spam filtering, and CAPTCHA authentication, have all begun adopting machine learning as a viable technique to deal with large scale adversarial activity. However, the naive usage of machine learning in an adversarial setting is prone to reverse engineering and evasion attacks, as most of these techniques were designed primarily for a static setting. The security domain is a dynamic landscape, with an ongoing never ending arms race ...


A Reduced Labeled Samples (Rls) Framework For Classification Of Imbalanced Concept-Drifting Streaming Data., Elaheh Arabmakki Dec 2016

A Reduced Labeled Samples (Rls) Framework For Classification Of Imbalanced Concept-Drifting Streaming Data., Elaheh Arabmakki

Electronic Theses and Dissertations

Stream processing frameworks are designed to process the streaming data that arrives in time. An example of such data is stream of emails that a user receives every day. Most of the real world data streams are also imbalanced as is in the stream of emails, which contains few spam emails compared to a lot of legitimate emails. The classification of the imbalanced data stream is challenging due to the several reasons: First of all, data streams are huge and they can not be stored in the memory for one time processing. Second, if the data is imbalanced, the accuracy ...