Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Computer Engineering

Development Of Enhanced Weed Detection System With Adaptive Thresholding, K-Means And Support Vector Machine, Dheeman Saha Jan 2019

Development Of Enhanced Weed Detection System With Adaptive Thresholding, K-Means And Support Vector Machine, Dheeman Saha

Electronic Theses and Dissertations

This paper proposes a sophisticated classification process to segment the leaves of carrots from weeds (mostly Chamomile). In the early stages, of the plants’ development, both weeds and carrot leaves are intermixed with each other and have similar color texture. This makes it difficult to identify without the help of the domain experts. Therefore, it is essential to remove the weed regions so that the carrot plants can grow without any interruptions. The process of identifying the weeds become more challenging when both plant and weed regions overlap (inter-leaves). The proposed system addresses this problem by creating a sophisticated means ...


Development Of Semantic Scene Conversion Model For Image-Based Localization At Night, Dongyoun Kim Jan 2019

Development Of Semantic Scene Conversion Model For Image-Based Localization At Night, Dongyoun Kim

Electronic Theses and Dissertations

Developing an autonomous vehicle navigation system invariant to illumination change is one of the biggest challenges in vision-based localization field due to the fact that the appearance of an image becomes inconsistent under different light conditions even with the same location. In particular, the night scene images have greatest change in appearance compared to the according day scenes. Moreover, the night images do not have enough information in Image-based localization. To deal with illumination change, image conversion methods have been researched. However, these methods could lose the detail of objects and add fake objects into the output images. In this ...