Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Doctoral Dissertations

Discipline
Institution
Keyword
Publication Year

Articles 31 - 60 of 118

Full-Text Articles in Computer Engineering

Achieving High Reliability And Efficiency In Maintaining Large-Scale Storage Systems Through Optimal Resource Provisioning And Data Placement, Lipeng Wan Aug 2016

Achieving High Reliability And Efficiency In Maintaining Large-Scale Storage Systems Through Optimal Resource Provisioning And Data Placement, Lipeng Wan

Doctoral Dissertations

With the explosive increase in the amount of data being generated by various applications, large-scale distributed and parallel storage systems have become common data storage solutions and been widely deployed and utilized in both industry and academia. While these high performance storage systems significantly accelerate the data storage and retrieval, they also bring some critical issues in system maintenance and management. In this dissertation, I propose three methodologies to address three of these critical issues.

First, I develop an optimal resource management and spare provisioning model to minimize the impact brought by component failures and ensure a highly operational experience ...


Novel Approaches To Clustering, Biclustering Algorithms Based On Adaptive Resonance Theory And Intelligent Control, Sejun Kim Jan 2016

Novel Approaches To Clustering, Biclustering Algorithms Based On Adaptive Resonance Theory And Intelligent Control, Sejun Kim

Doctoral Dissertations

"The problem of clustering is one of the most widely studied area in data mining and machine learning. Adaptive resonance theory (ART), an unsupervised learning clustering algorithm, is a clustering method that can learn arbitrary input patterns in a stable, fast and self-organizing way. This dissertation focuses on unsupervised learning methods, mostly based on variations of ART.

Hierarchical ART clustering is studied by generating a tree of ART units with GPU based parallelization to provide fast and finesse clustering. Experiment results show that the our method achieves significant training speed increase in generating deep ART trees compared with that from ...


Clustering: Methodology, Hybrid Systems, Visualization, Validation And Implementation, Dao Minh Lam Jan 2016

Clustering: Methodology, Hybrid Systems, Visualization, Validation And Implementation, Dao Minh Lam

Doctoral Dissertations

"Unsupervised learning is one of the most important steps of machine learning applications. Besides its ability to obtain the insight of the data distribution, unsupervised learning is used as a preprocessing step for other machine learning algorithm. This dissertation investigates the application of unsupervised learning into various types of data for many machine learning tasks such as clustering, regression and classification. The dissertation is organized into three papers. In the first paper, unsupervised learning is applied to mixed categorical and numerical feature data type to transform the data objects from the mixed type feature domain into a new sparser numerical ...


Intrinsic Functions For Securing Cmos Computation: Variability, Modeling And Noise Sensitivity, Xiaolin Xu Jan 2016

Intrinsic Functions For Securing Cmos Computation: Variability, Modeling And Noise Sensitivity, Xiaolin Xu

Doctoral Dissertations

A basic premise behind modern secure computation is the demand for lightweight cryptographic primitives, like identifier or key generator. From a circuit perspective, the development of cryptographic modules has also been driven by the aggressive scalability of complementary metal-oxide-semiconductor (CMOS) technology. While advancing into nano-meter regime, one significant characteristic of today's CMOS design is the random nature of process variability, which limits the nominal circuit design. With the continuous scaling of CMOS technology, instead of mitigating the physical variability, leveraging such properties becomes a promising way. One of the famous products adhering to this double-edged sword philosophy is the ...


Intrinsically Motivated Exploration In Hierarchical Reinforcement Learning, Christopher M. Vigorito Jan 2016

Intrinsically Motivated Exploration In Hierarchical Reinforcement Learning, Christopher M. Vigorito

Doctoral Dissertations

The acquisition of hierarchies of reusable skills is one of the distinguishing characteristics of human intelligence, and the learning of such hierarchies is an important open problem in computational reinforcement learning (RL). In humans, these skills are learned during a substantial developmental period in which individuals are intrinsically motivated to explore their environment and learn about the effects of their actions. The skills learned during this period of exploration are then reused to great effect later in life to solve many unfamiliar problems very quickly. This thesis presents novel methods for achieving such developmental acquisition of skill hierarchies in artificial ...


Multi-Classifier Fusion Strategy For Activity And Intent Recognition Of Torso Movements, Abhijit Kadrolkar Jan 2016

Multi-Classifier Fusion Strategy For Activity And Intent Recognition Of Torso Movements, Abhijit Kadrolkar

Doctoral Dissertations

As assistive, wearable robotic devices are being developed to physically assist their users, it has become crucial to develop safe, reliable methods to coordinate the device with the intentions and motions of the wearer. This dissertation investigates the recognition of user intent during flexion and extension of the human torso in the sagittal plane to be used for control of an assistive exoskeleton for the human torso. A multi-sensor intent recognition approach is developed that combines information from surface electromyogram (sEMG) signals from the user’s muscles and inertial sensors mounted on the user’s body. Intent recognition is implemented ...


Hyperspectral Data Acquisition And Its Application For Face Recognition, Woon Cho Dec 2015

Hyperspectral Data Acquisition And Its Application For Face Recognition, Woon Cho

Doctoral Dissertations

Current face recognition systems are rife with serious challenges in uncontrolled conditions: e.g., unrestrained lighting, pose variations, accessories, etc. Hyperspectral imaging (HI) is typically employed to counter many of those challenges, by incorporating the spectral information within different bands. Although numerous methods based on hyperspectral imaging have been developed for face recognition with promising results, three fundamental challenges remain: 1) low signal to noise ratios and low intensity values in the bands of the hyperspectral image specifically near blue bands; 2) high dimensionality of hyperspectral data; and 3) inter-band misalignment (IBM) correlated with subject motion during data acquisition.

This ...


Neuron Clustering For Mitigating Catastrophic Forgetting In Supervised And Reinforcement Learning, Benjamin Frederick Goodrich Dec 2015

Neuron Clustering For Mitigating Catastrophic Forgetting In Supervised And Reinforcement Learning, Benjamin Frederick Goodrich

Doctoral Dissertations

Neural networks have had many great successes in recent years, particularly with the advent of deep learning and many novel training techniques. One issue that has affected neural networks and prevented them from performing well in more realistic online environments is that of catastrophic forgetting. Catastrophic forgetting affects supervised learning systems when input samples are temporally correlated or are non-stationary. However, most real-world problems are non-stationary in nature, resulting in prolonged periods of time separating inputs drawn from different regions of the input space.

Reinforcement learning represents a worst-case scenario when it comes to precipitating catastrophic forgetting in neural networks ...


Using Gpu To Accelerate Linear Computations In Power System Applications, Xue Li Dec 2015

Using Gpu To Accelerate Linear Computations In Power System Applications, Xue Li

Doctoral Dissertations

With the development of advanced power system controls, the industrial and research community is becoming more interested in simulating larger interconnected power grids. It is always critical to incorporate advanced computing technologies to accelerate these power system computations. Power flow, one of the most fundamental computations in power system analysis, converts the solution of non-linear systems to that of a set of linear systems via the Newton method or one of its variants. An efficient solution to these linear equations is the key to improving the performance of power flow computation, and hence to accelerating other power system applications based ...


Arithmetic Logic Unit Architectures With Dynamically Defined Precision, Getao Liang Dec 2015

Arithmetic Logic Unit Architectures With Dynamically Defined Precision, Getao Liang

Doctoral Dissertations

Modern central processing units (CPUs) employ arithmetic logic units (ALUs) that support statically defined precisions, often adhering to industry standards. Although CPU manufacturers highly optimize their ALUs, industry standard precisions embody accuracy and performance compromises for general purpose deployment. Hence, optimizing ALU precision holds great potential for improving speed and energy efficiency. Previous research on multiple precision ALUs focused on predefined, static precisions. Little previous work addressed ALU architectures with customized, dynamically defined precision. This dissertation presents approaches for developing dynamic precision ALU architectures for both fixed-point and floating-point to enable better performance, energy efficiency, and numeric accuracy. These new ...


Data Security And Privacy In Smart Grid, Yue Tong Aug 2015

Data Security And Privacy In Smart Grid, Yue Tong

Doctoral Dissertations

This dissertation explores novel data security and privacy problems in the emerging smart grid.

The need for data security and privacy spans the whole life cycle of the data in the smart grid, across the phases of data acquisition, local processing and archiving, collaborative processing, and finally sharing and archiving. The first two phases happen in the private domains of an individual utility company, where data are collected from the power system and processed at the local facilities. When data are being acquired and processed in the private domain, data security is the most critical concern. The key question is ...


Compressed Sensing In Resource-Constrained Environments: From Sensing Mechanism Design To Recovery Algorithms, Shuangjiang Li Aug 2015

Compressed Sensing In Resource-Constrained Environments: From Sensing Mechanism Design To Recovery Algorithms, Shuangjiang Li

Doctoral Dissertations

Compressed Sensing (CS) is an emerging field based on the revelation that a small collection of linear projections of a sparse signal contains enough information for reconstruction. It is promising that CS can be utilized in environments where the signal acquisition process is extremely difficult or costly, e.g., a resource-constrained environment like the smartphone platform, or a band-limited environment like visual sensor network (VSNs). There are several challenges to perform sensing due to the characteristic of these platforms, including, for example, needing active user involvement, computational and storage limitations and lower transmission capabilities. This dissertation focuses on the study ...


Computational Analysis Of Neutron Scattering Data, Benjamin Walter Martin Aug 2015

Computational Analysis Of Neutron Scattering Data, Benjamin Walter Martin

Doctoral Dissertations

This work explores potential methods for use in the detection and classification of defects within crystal structures via analysis of diffuse scattering data generated by single crystal neutron scattering experiments. The proposed defect detection methodology uses machine learning and image processing techniques to perform image texture analysis on neutron diffraction patterns generated by neutron scattering simulations. Once the methodology is presented, it is tested via a series of defect detection problems of increasing difficulty which utilize neutron scattering data simulated by a number of simulation techniques. As the problem difficulty is increased, the defect detection methodology is refined in order ...


A Magnetic Actuated Fully Insertable Robotic Camera System For Single Incision Laparoscopic Surgery, Xiaolong Liu Aug 2015

A Magnetic Actuated Fully Insertable Robotic Camera System For Single Incision Laparoscopic Surgery, Xiaolong Liu

Doctoral Dissertations

Minimally Invasive Surgery (MIS) is a common surgical procedure which makes tiny incisions in the patients anatomy, inserting surgical instruments and using laparoscopic cameras to guide the procedure. Compared with traditional open surgery, MIS allows surgeons to perform complex surgeries with reduced trauma to the muscles and soft tissues, less intraoperative hemorrhaging and postoperative pain, and faster recovery time. Surgeons rely heavily on laparoscopic cameras for hand-eye coordination and control during a procedure. However, the use of a standard laparoscopic camera, achieved by pushing long sticks into a dedicated small opening, involves multiple incisions for the surgical instruments. Recently, single ...


Dynamic Simulation And Neuromuscular Control Of Movement: Applications For Predictive Simulations Of Balance Recovery, Misagh Mansouri Boroujeni May 2015

Dynamic Simulation And Neuromuscular Control Of Movement: Applications For Predictive Simulations Of Balance Recovery, Misagh Mansouri Boroujeni

Doctoral Dissertations

Balance is among the most challenging tasks for patients with movement disorders. Study and treatment of these disorders could greatly benefit from combined software tools that offer better insights into neuromuscular biomechanics, and predictive capabilities for optimal surgical and rehabilitation treatment planning. A platform was created to combine musculoskeletal modeling, closed-loop forward dynamic simulation, optimization techniques, and neuromuscular control system design. Spinal (stretch-reflex) and supraspinal (operational space task-based) controllers were developed to test simulation-based hypotheses related to balance recovery and movement control. A corrective procedure (rectus femoris transfer surgery) was targeted for children experiencing stiff-knee gait and how this procedure ...


Computational Framework For Small Animal Spect Imaging: Simulation And Reconstruction, Sang Hyeb Lee May 2015

Computational Framework For Small Animal Spect Imaging: Simulation And Reconstruction, Sang Hyeb Lee

Doctoral Dissertations

Small animal Single Photon Emission Computed Tomography (SPECT) has been an invaluable asset in biomedical science since this non-invasive imaging technique allows the longitudinal studies of animal models of human diseases. However, the image degradation caused by non-stationary collimator-detector response and single photon emitting nature of SPECT makes it difficult to provide a quantitative measure of 3D radio-pharmaceutical distribution inside the patient. Moreover, this problem exacerbates when an intra-peritoneal X-ray contrast agent is injected into a mouse for low-energy radiotracers.

In this dissertation, we design and develop a complete computational framework for the entire SPECT scan procedure from the radio-pharmaceutical ...


An Opportunistic Service Oriented Approach For Robot Search, Dan Xie Feb 2015

An Opportunistic Service Oriented Approach For Robot Search, Dan Xie

Doctoral Dissertations

Health care for the elderly poses a major challenge as the baby boomer generation ages. Part of the solution is to develop technology using sensor networks and service robotics to increase the length of time that an elder can remain at home. Since moderate immobility and memory impairment are common as people age, a major problem for the elderly is locating and retrieving frequently used "common" objects such as keys, cellphones, books, etc. However, for robots to assist people while they search for objects, they must possess the ability to interact with the human client, complex client-side environments and heterogeneous ...


Learning Parameterized Skills, Bruno Castro Da Silva Feb 2015

Learning Parameterized Skills, Bruno Castro Da Silva

Doctoral Dissertations

One of the defining characteristics of human intelligence is the ability to acquire and refine skills. Skills are behaviors for solving problems that an agent encounters often—sometimes in different contexts and situations—throughout its lifetime. Identifying important problems that recur and retaining their solutions as skills allows agents to more rapidly solve novel problems by adjusting and combining their existing skills.

In this thesis we introduce a general framework for learning reusable parameterized skills. Reusable skills are parameterized procedures that—given a description of a problem to be solved—produce appropriate behaviors or policies. They can be sequentially and ...


Universal Schema For Knowledge Representation From Text And Structured Data, Limin Yao Feb 2015

Universal Schema For Knowledge Representation From Text And Structured Data, Limin Yao

Doctoral Dissertations

In data integration we transform information from a source into a target schema. A general problem in this task is loss of fidelity and coverage: the source expresses more knowledge than that can be fit into the target schema, or knowledge that is hard to fit into any schema at all. This problem is taken to an extreme in information extraction (IE) where the source is natural language---one of the most expressive forms of knowledge representation. To address this issue, one can either automatically learn a latent schema emergent in text (a brittle and ill-defined task), or manually define schemas ...


Managing And Leveraging Variations And Noise In Nanometer Cmos, Vikram B. Suresh Feb 2015

Managing And Leveraging Variations And Noise In Nanometer Cmos, Vikram B. Suresh

Doctoral Dissertations

Advanced CMOS technologies have enabled high density designs at the cost of complex fabrication process. Variation in oxide thickness and Random Dopant Fluctuation (RDF) lead to variation in transistor threshold voltage Vth. Current photo-lithography process used for printing decreasing critical dimensions result in variation in transistor channel length and width. A related challenge in nanometer CMOS is that of on-chip random noise. With decreasing threshold voltage and operating voltage; and increasing operating temperature, CMOS devices are more sensitive to random on-chip noise in advanced technologies.

In this thesis, we explore novel circuit techniques to manage the impact of process ...


Design And Implementation Of An Economy Plane For The Internet, Xinming Chen Jan 2015

Design And Implementation Of An Economy Plane For The Internet, Xinming Chen

Doctoral Dissertations

The Internet has been very successful in supporting many network applications. As the diversity of uses for the Internet has increased, many protocols and services have been developed by the industry and the research community. However, many of them failed to get deployed in the Internet. One challenge of deploying these novel ideas in operational network is that the network providers need to be involved in the process.

Many novel network protocols and services, like multicast and end-to-end QoS, need the support from network providers. However, since network providers are typically driven by business reasons, if they can not get ...


On The Deployment Of On-Chip Noise Sensors, Tao Wang Jan 2015

On The Deployment Of On-Chip Noise Sensors, Tao Wang

Doctoral Dissertations

"The relentless technology scaling has led to significantly reduced noise margin and complicated functionalities. As such, design time techniques per se are less likely to ensure power integrity, resulting in runtime voltage emergencies. To alleviate the issue, recently several works have shed light on the possibilities of dynamic noise management systems. Most of these works rely on on-chip noise sensors to accurately capture voltage emergencies. However, they all assume that the placement of the sensors is given. It remains an open problem in the literature how to optimally place a given number of noise sensors for best voltage emergency detection ...


Computing And The Electrical Transport Properties Of Coupled Quantum Networks, Casey Andrew Cain Jan 2015

Computing And The Electrical Transport Properties Of Coupled Quantum Networks, Casey Andrew Cain

Doctoral Dissertations

In this dissertation a number of investigations were conducted on ballistic quantum networks in the mesoscopic range. In this regime, the wave nature of electron transport under the influence of transverse magnetic fields leads to interesting applications for digital logic and computing circuits. The work specifically looks at characterizing a few main areas that would be of interest to experimentalists who are working in nanostructure devices, and is organized as a series of papers. The first paper analyzes scaling relations and normal mode charge distributions for such circuits in both isolated and open (terminals attached) form. The second paper compares ...


Reliability And Security In Low Power Circuits And Systems, Hui Geng Jan 2015

Reliability And Security In Low Power Circuits And Systems, Hui Geng

Doctoral Dissertations

"With the massive deployment of mobile devices in sensitive areas such as healthcare and defense, hardware reliability and security have become hot research topics in recent years. These topics, although different in definition, are usually correlated. This dissertation offers an in-depth treatment on enhancing the reliability and security of low power circuits and systems. The first part of the dissertation deals with the reliability of sub-threshold designs, which use supply voltage lower than the threshold voltage (Vth) of transistors to reduce power. The exponential relationship between delay and Vth significantly jeopardizes their reliability due to process variation induced ...


Skybridge: A New Nanoscale 3-D Computing Framework For Future Integrated Circuits, Mostafizur Rahman Jan 2015

Skybridge: A New Nanoscale 3-D Computing Framework For Future Integrated Circuits, Mostafizur Rahman

Doctoral Dissertations

Continuous scaling of CMOS has been the major catalyst in miniaturization of integrated circuits (ICs) and crucial for global socio-economic progress. However, continuing the traditional way of scaling to sub-20nm technologies is proving to be very difficult as MOSFETs are reaching their fundamental performance limits [1] and interconnection bottleneck is dominating IC operational power and performance [2]. Migrating to 3-D, as a way to advance scaling, has been elusive due to inherent customization and manufacturing requirements in CMOS architecture that are incompatible with 3-D organization. Partial attempts with die-die [3] and layer-layer [4] stacking have their own limitations [5]. We ...


Energy Optimizations For Smart Buildings And Smart Grids, Aditya K. Mishra Jan 2015

Energy Optimizations For Smart Buildings And Smart Grids, Aditya K. Mishra

Doctoral Dissertations

Modern buildings are heavy power consumers. For instance, of the total electricity consumed in the US, 75% is consumed in the residential and commercial buildings. This consumption is not evenly distributed over time. Typical consumption profile exhibits several peaks and troughs. The peakiness, in turn, dictates the electric grid's generation, transmission and distribution costs, and also the associated carbon emissions.

This thesis discusses challenges involved in achieving the sustainability goals in buildings and electric grids. It investigates building and grid energy footprint optimization techniques to achieve the following goals: 1) making buildings energy efficient, 2) cutting building's electricity ...


Privacy-Preserving Payments For Transportation Systems, Gesine Hinterwalder Jan 2015

Privacy-Preserving Payments For Transportation Systems, Gesine Hinterwalder

Doctoral Dissertations

The operation of our society heavily relies on high mobility of people. Not only our social life but also our economy and trade are built upon a system where people need to be able to move around easily. The costs for building and maintaining a suitable transportation infrastructure to satisfy those needs are high, and to charge users is thus a central requirement. This calls for well functioning payment systems satisfying the multitude of requirements that transportation systems impose on them.

Electronic payment systems have many benefits over traditional cash payments as they are easy to maintain, can be more ...


Physically Equivalent Intelligent Systems For Reasoning Under Uncertainty At Nanoscale, Santosh Khasanvis Jan 2015

Physically Equivalent Intelligent Systems For Reasoning Under Uncertainty At Nanoscale, Santosh Khasanvis

Doctoral Dissertations

Machines today lack the inherent ability to reason and make decisions, or operate in the presence of uncertainty. Machine-learning methods such as Bayesian Networks (BNs) are widely acknowledged for their ability to uncover relationships and generate causal models for complex interactions. However, their massive computational requirement, when implemented on conventional computers, hinders their usefulness in many critical problem areas e.g., genetic basis of diseases, macro finance, text classification, environment monitoring, etc. We propose a new non-von Neumann technology framework purposefully architected across all layers for solving these problems efficiently through physical equivalence, enabled by emerging nanotechnology. The architecture builds ...


Application Of Techniques For Map Estimation To Distributed Constraint Optimization Problem, Yoonheui Kim Jan 2015

Application Of Techniques For Map Estimation To Distributed Constraint Optimization Problem, Yoonheui Kim

Doctoral Dissertations

The problem of efficiently finding near-optimal decisions in multi-agent systems has become increasingly important because of the growing number of multi-agent applications with large numbers of agents operating in real-world environments. In these systems, agents are often subject to tight resource constraints and agents have only local views. When agents have non-global constraints, each of which is independent, the problem can be formalized as a distributed constraint optimization problem (DCOP). The DCOP is closely associated with the problem of inference on graphical models. Many approaches from inference literature have been adopted to solve DCOPs. We focus on the Max-Sum algorithm ...


Energy-Efficient Content Delivery Networks, Vimal Mathew Jan 2015

Energy-Efficient Content Delivery Networks, Vimal Mathew

Doctoral Dissertations

Internet-scale distributed systems such as content delivery networks (CDNs) operate hundreds of thousands of servers deployed in thousands of data center locations around the globe. Since the energy costs of operating such a large IT infrastructure are a significant fraction of the total operating costs, we argue for redesigning them to incorporate energy optimization as a first-order principle. We focus on CDNs and demonstrate techniques to save energy while meeting client-perceived service level agreements (SLAs) and minimizing impact on hardware reliability.

Servers deployed at individual data centers can be switched off at low load to save energy. We show that ...