Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Computer Engineering

Universal Schema For Knowledge Representation From Text And Structured Data, Limin Yao Feb 2015

Universal Schema For Knowledge Representation From Text And Structured Data, Limin Yao

Doctoral Dissertations

In data integration we transform information from a source into a target schema. A general problem in this task is loss of fidelity and coverage: the source expresses more knowledge than that can be fit into the target schema, or knowledge that is hard to fit into any schema at all. This problem is taken to an extreme in information extraction (IE) where the source is natural language---one of the most expressive forms of knowledge representation. To address this issue, one can either automatically learn a latent schema emergent in text (a brittle and ill-defined task), or manually define schemas ...


3d Robotic Sensing Of People: Human Perception, Representation And Activity Recognition, Hao Zhang Aug 2014

3d Robotic Sensing Of People: Human Perception, Representation And Activity Recognition, Hao Zhang

Doctoral Dissertations

The robots are coming. Their presence will eventually bridge the digital-physical divide and dramatically impact human life by taking over tasks where our current society has shortcomings (e.g., search and rescue, elderly care, and child education). Human-centered robotics (HCR) is a vision to address how robots can coexist with humans and help people live safer, simpler and more independent lives.

As humans, we have a remarkable ability to perceive the world around us, perceive people, and interpret their behaviors. Endowing robots with these critical capabilities in highly dynamic human social environments is a significant but very challenging problem in ...


Online Multi-Stage Deep Architectures For Feature Extraction And Object Recognition, Derek Christopher Rose Aug 2013

Online Multi-Stage Deep Architectures For Feature Extraction And Object Recognition, Derek Christopher Rose

Doctoral Dissertations

Multi-stage visual architectures have recently found success in achieving high classification accuracies over image datasets with large variations in pose, lighting, and scale. Inspired by techniques currently at the forefront of deep learning, such architectures are typically composed of one or more layers of preprocessing, feature encoding, and pooling to extract features from raw images. Training these components traditionally relies on large sets of patches that are extracted from a potentially large image dataset. In this context, high-dimensional feature space representations are often helpful for obtaining the best classification performances and providing a higher degree of invariance to object transformations ...


Mitigation Of Catastrophic Interference In Neural Networks And Ensembles Using A Fixed Expansion Layer, Robert Austin Coop Aug 2013

Mitigation Of Catastrophic Interference In Neural Networks And Ensembles Using A Fixed Expansion Layer, Robert Austin Coop

Doctoral Dissertations

Catastrophic forgetting (also known in the literature as catastrophic interference) is the phenomenon by which learning systems exhibit a severe exponential loss of learned information when exposed to relatively small amounts of new training data. This loss of information is not caused by constraints due to the lack of resources available to the learning system, but rather is caused by representational overlap within the learning system and by side-effects of the training methods used. Catastrophic forgetting in auto-associative pattern recognition is a well-studied attribute of most parameterized supervised learning systems. A variation of this phenomenon, in the context of feedforward ...


Data Mining Based Learning Algorithms For Semi-Supervised Object Identification And Tracking, Michael P. Dessauer Jan 2011

Data Mining Based Learning Algorithms For Semi-Supervised Object Identification And Tracking, Michael P. Dessauer

Doctoral Dissertations

Sensor exploitation (SE) is the crucial step in surveillance applications such as airport security and search and rescue operations. It allows localization and identification of movement in urban settings and can significantly boost knowledge gathering, interpretation and action. Data mining techniques offer the promise of precise and accurate knowledge acquisition techniques in high-dimensional data domains (and diminishing the “curse of dimensionality” prevalent in such datasets), coupled by algorithmic design in feature extraction, discriminative ranking, feature fusion and supervised learning (classification). Consequently, data mining techniques and algorithms can be used to refine and process captured data and to detect, recognize, classify ...