Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Doctoral Dissertations

University of Tennessee, Knoxville

Discipline
Keyword
Publication Year

Articles 1 - 30 of 57

Full-Text Articles in Computer Engineering

Dynamic In Vivo Skeletal Feature Tracking Via Fluoroscopy Using A Human Gait Model, William Patrick Anderson Dec 2017

Dynamic In Vivo Skeletal Feature Tracking Via Fluoroscopy Using A Human Gait Model, William Patrick Anderson

Doctoral Dissertations

The Tracking Fluoroscope System II, a mobile robotic fluoroscopy platform, developed and built at the University of Tennessee, Knoxville, presently employs a pattern matching algorithm in order to identify and track a marker placed upon a subject’s knee joint of interest. The purpose of this research is to generate a new tracking algorithm based around the human gait cycle for prediction and improving the overall accuracy of joint tracking.

This research centers around processing the acquired x-ray images of the desired knee joint obtained during standard clinical operation in order to identify and track directly through the acquired image ...


Computational Imaging Approach To Recovery Of Target Coordinates Using Orbital Sensor Data, Michael D. Vaughan Aug 2017

Computational Imaging Approach To Recovery Of Target Coordinates Using Orbital Sensor Data, Michael D. Vaughan

Doctoral Dissertations

This dissertation addresses the components necessary for simulation of an image-based recovery of the position of a target using orbital image sensors. Each component is considered in detail, focusing on the effect that design choices and system parameters have on the accuracy of the position estimate. Changes in sensor resolution, varying amounts of blur, differences in image noise level, selection of algorithms used for each component, and lag introduced by excessive processing time all contribute to the accuracy of the result regarding recovery of target coordinates using orbital sensor data.

Using physical targets and sensors in this scenario would be ...


Modeling The Consumer Acceptance Of Retail Service Robots, So Young Song Aug 2017

Modeling The Consumer Acceptance Of Retail Service Robots, So Young Song

Doctoral Dissertations

This study uses the Computers Are Social Actors (CASA) and domestication theories as the underlying framework of an acceptance model of retail service robots (RSRs). The model illustrates the relationships among facilitators, attitudes toward Human-Robot Interaction (HRI), anxiety toward robots, anticipated service quality, and the acceptance of RSRs. Specifically, the researcher investigates the extent to which the facilitators of usefulness, social capability, the appearance of RSRs, and the attitudes toward HRI affect acceptance and increase the anticipation of service quality. The researcher also tests the inhibiting role of pre-existing anxiety toward robots on the relationship between these facilitators and attitudes ...


Wide-Area Measurement-Driven Approaches For Power System Modeling And Analytics, Hesen Liu Aug 2017

Wide-Area Measurement-Driven Approaches For Power System Modeling And Analytics, Hesen Liu

Doctoral Dissertations

This dissertation presents wide-area measurement-driven approaches for power system modeling and analytics. Accurate power system dynamic models are the very basis of power system analysis, control, and operation. Meanwhile, phasor measurement data provide first-hand knowledge of power system dynamic behaviors. The idea of building out innovative applications with synchrophasor data is promising.

Taking advantage of the real-time wide-area measurements, one of phasor measurements’ novel applications is to develop a synchrophasor-based auto-regressive with exogenous inputs (ARX) model that can be updated online to estimate or predict system dynamic responses.

Furthermore, since auto-regressive models are in a big family, the ARX model ...


Learning Multimodal Structures In Computer Vision, Ali Taalimi Aug 2017

Learning Multimodal Structures In Computer Vision, Ali Taalimi

Doctoral Dissertations

A phenomenon or event can be received from various kinds of detectors or under different conditions. Each such acquisition framework is a modality of the phenomenon. Due to the relation between the modalities of multimodal phenomena, a single modality cannot fully describe the event of interest. Since several modalities report on the same event introduces new challenges comparing to the case of exploiting each modality separately.

We are interested in designing new algorithmic tools to apply sensor fusion techniques in the particular signal representation of sparse coding which is a favorite methodology in signal processing, machine learning and statistics to ...


A Probabilistic Software Framework For Scalable Data Storage And Integrity Check, Sisi Xiong Aug 2017

A Probabilistic Software Framework For Scalable Data Storage And Integrity Check, Sisi Xiong

Doctoral Dissertations

Data has overwhelmed the digital world in terms of volume, variety and velocity. Data- intensive applications are facing unprecedented challenges. On the other hand, computation resources, such as memory, suffer from shortage comparing to data scale. However, in certain applications, it is a must to process large amount of data in a time efficient manner. Probabilistic approaches are compromises between these three perspectives: large amount of data, limited computation resources and high time efficiency, in the sense that those approaches cannot guarantee 100% correctness, their error rates, however, are predictable and adjustable depending on available computation resources and time constraints ...


Achieving High Reliability And Efficiency In Maintaining Large-Scale Storage Systems Through Optimal Resource Provisioning And Data Placement, Lipeng Wan Aug 2016

Achieving High Reliability And Efficiency In Maintaining Large-Scale Storage Systems Through Optimal Resource Provisioning And Data Placement, Lipeng Wan

Doctoral Dissertations

With the explosive increase in the amount of data being generated by various applications, large-scale distributed and parallel storage systems have become common data storage solutions and been widely deployed and utilized in both industry and academia. While these high performance storage systems significantly accelerate the data storage and retrieval, they also bring some critical issues in system maintenance and management. In this dissertation, I propose three methodologies to address three of these critical issues.

First, I develop an optimal resource management and spare provisioning model to minimize the impact brought by component failures and ensure a highly operational experience ...


Topology Design And Delay Control For Communication Networks In Smart Grid, Xiaodong Wang Aug 2016

Topology Design And Delay Control For Communication Networks In Smart Grid, Xiaodong Wang

Doctoral Dissertations

Stability is a critical concern in the design and maintenance of power systems. Different approaches have been proposed for the analysis of power grid stability in various scenarios depending on small or large perturbations and the speed of the phenomenon of interest. In this work, we consider the power grid as a group of flocking birds, as synchronization is the key issue in both contexts. The framework of partial difference equation (PdE) is used to analyze the system stability, when designing the communication network of the power grid network for conveying measurements between different power stations. Both the cases where ...


Face Centered Image Analysis Using Saliency And Deep Learning Based Techniques, Rui Guo Aug 2016

Face Centered Image Analysis Using Saliency And Deep Learning Based Techniques, Rui Guo

Doctoral Dissertations

Image analysis starts with the purpose of configuring vision machines that can perceive like human to intelligently infer general principles and sense the surrounding situations from imagery. This dissertation studies the face centered image analysis as the core problem in high level computer vision research and addresses the problem by tackling three challenging subjects: Are there anything interesting in the image? If there is, what is/are that/they? If there is a person presenting, who is he/she? What kind of expression he/she is performing? Can we know his/her age? Answering these problems results in the saliency-based ...


Neuron Clustering For Mitigating Catastrophic Forgetting In Supervised And Reinforcement Learning, Benjamin Frederick Goodrich Dec 2015

Neuron Clustering For Mitigating Catastrophic Forgetting In Supervised And Reinforcement Learning, Benjamin Frederick Goodrich

Doctoral Dissertations

Neural networks have had many great successes in recent years, particularly with the advent of deep learning and many novel training techniques. One issue that has affected neural networks and prevented them from performing well in more realistic online environments is that of catastrophic forgetting. Catastrophic forgetting affects supervised learning systems when input samples are temporally correlated or are non-stationary. However, most real-world problems are non-stationary in nature, resulting in prolonged periods of time separating inputs drawn from different regions of the input space.

Reinforcement learning represents a worst-case scenario when it comes to precipitating catastrophic forgetting in neural networks ...


Arithmetic Logic Unit Architectures With Dynamically Defined Precision, Getao Liang Dec 2015

Arithmetic Logic Unit Architectures With Dynamically Defined Precision, Getao Liang

Doctoral Dissertations

Modern central processing units (CPUs) employ arithmetic logic units (ALUs) that support statically defined precisions, often adhering to industry standards. Although CPU manufacturers highly optimize their ALUs, industry standard precisions embody accuracy and performance compromises for general purpose deployment. Hence, optimizing ALU precision holds great potential for improving speed and energy efficiency. Previous research on multiple precision ALUs focused on predefined, static precisions. Little previous work addressed ALU architectures with customized, dynamically defined precision. This dissertation presents approaches for developing dynamic precision ALU architectures for both fixed-point and floating-point to enable better performance, energy efficiency, and numeric accuracy. These new ...


Hyperspectral Data Acquisition And Its Application For Face Recognition, Woon Cho Dec 2015

Hyperspectral Data Acquisition And Its Application For Face Recognition, Woon Cho

Doctoral Dissertations

Current face recognition systems are rife with serious challenges in uncontrolled conditions: e.g., unrestrained lighting, pose variations, accessories, etc. Hyperspectral imaging (HI) is typically employed to counter many of those challenges, by incorporating the spectral information within different bands. Although numerous methods based on hyperspectral imaging have been developed for face recognition with promising results, three fundamental challenges remain: 1) low signal to noise ratios and low intensity values in the bands of the hyperspectral image specifically near blue bands; 2) high dimensionality of hyperspectral data; and 3) inter-band misalignment (IBM) correlated with subject motion during data acquisition.

This ...


Using Gpu To Accelerate Linear Computations In Power System Applications, Xue Li Dec 2015

Using Gpu To Accelerate Linear Computations In Power System Applications, Xue Li

Doctoral Dissertations

With the development of advanced power system controls, the industrial and research community is becoming more interested in simulating larger interconnected power grids. It is always critical to incorporate advanced computing technologies to accelerate these power system computations. Power flow, one of the most fundamental computations in power system analysis, converts the solution of non-linear systems to that of a set of linear systems via the Newton method or one of its variants. An efficient solution to these linear equations is the key to improving the performance of power flow computation, and hence to accelerating other power system applications based ...


Data Security And Privacy In Smart Grid, Yue Tong Aug 2015

Data Security And Privacy In Smart Grid, Yue Tong

Doctoral Dissertations

This dissertation explores novel data security and privacy problems in the emerging smart grid.

The need for data security and privacy spans the whole life cycle of the data in the smart grid, across the phases of data acquisition, local processing and archiving, collaborative processing, and finally sharing and archiving. The first two phases happen in the private domains of an individual utility company, where data are collected from the power system and processed at the local facilities. When data are being acquired and processed in the private domain, data security is the most critical concern. The key question is ...


A Magnetic Actuated Fully Insertable Robotic Camera System For Single Incision Laparoscopic Surgery, Xiaolong Liu Aug 2015

A Magnetic Actuated Fully Insertable Robotic Camera System For Single Incision Laparoscopic Surgery, Xiaolong Liu

Doctoral Dissertations

Minimally Invasive Surgery (MIS) is a common surgical procedure which makes tiny incisions in the patients anatomy, inserting surgical instruments and using laparoscopic cameras to guide the procedure. Compared with traditional open surgery, MIS allows surgeons to perform complex surgeries with reduced trauma to the muscles and soft tissues, less intraoperative hemorrhaging and postoperative pain, and faster recovery time. Surgeons rely heavily on laparoscopic cameras for hand-eye coordination and control during a procedure. However, the use of a standard laparoscopic camera, achieved by pushing long sticks into a dedicated small opening, involves multiple incisions for the surgical instruments. Recently, single ...


Computational Analysis Of Neutron Scattering Data, Benjamin Walter Martin Aug 2015

Computational Analysis Of Neutron Scattering Data, Benjamin Walter Martin

Doctoral Dissertations

This work explores potential methods for use in the detection and classification of defects within crystal structures via analysis of diffuse scattering data generated by single crystal neutron scattering experiments. The proposed defect detection methodology uses machine learning and image processing techniques to perform image texture analysis on neutron diffraction patterns generated by neutron scattering simulations. Once the methodology is presented, it is tested via a series of defect detection problems of increasing difficulty which utilize neutron scattering data simulated by a number of simulation techniques. As the problem difficulty is increased, the defect detection methodology is refined in order ...


Compressed Sensing In Resource-Constrained Environments: From Sensing Mechanism Design To Recovery Algorithms, Shuangjiang Li Aug 2015

Compressed Sensing In Resource-Constrained Environments: From Sensing Mechanism Design To Recovery Algorithms, Shuangjiang Li

Doctoral Dissertations

Compressed Sensing (CS) is an emerging field based on the revelation that a small collection of linear projections of a sparse signal contains enough information for reconstruction. It is promising that CS can be utilized in environments where the signal acquisition process is extremely difficult or costly, e.g., a resource-constrained environment like the smartphone platform, or a band-limited environment like visual sensor network (VSNs). There are several challenges to perform sensing due to the characteristic of these platforms, including, for example, needing active user involvement, computational and storage limitations and lower transmission capabilities. This dissertation focuses on the study ...


Computational Framework For Small Animal Spect Imaging: Simulation And Reconstruction, Sang Hyeb Lee May 2015

Computational Framework For Small Animal Spect Imaging: Simulation And Reconstruction, Sang Hyeb Lee

Doctoral Dissertations

Small animal Single Photon Emission Computed Tomography (SPECT) has been an invaluable asset in biomedical science since this non-invasive imaging technique allows the longitudinal studies of animal models of human diseases. However, the image degradation caused by non-stationary collimator-detector response and single photon emitting nature of SPECT makes it difficult to provide a quantitative measure of 3D radio-pharmaceutical distribution inside the patient. Moreover, this problem exacerbates when an intra-peritoneal X-ray contrast agent is injected into a mouse for low-energy radiotracers.

In this dissertation, we design and develop a complete computational framework for the entire SPECT scan procedure from the radio-pharmaceutical ...


Dynamic Simulation And Neuromuscular Control Of Movement: Applications For Predictive Simulations Of Balance Recovery, Misagh Mansouri Boroujeni May 2015

Dynamic Simulation And Neuromuscular Control Of Movement: Applications For Predictive Simulations Of Balance Recovery, Misagh Mansouri Boroujeni

Doctoral Dissertations

Balance is among the most challenging tasks for patients with movement disorders. Study and treatment of these disorders could greatly benefit from combined software tools that offer better insights into neuromuscular biomechanics, and predictive capabilities for optimal surgical and rehabilitation treatment planning. A platform was created to combine musculoskeletal modeling, closed-loop forward dynamic simulation, optimization techniques, and neuromuscular control system design. Spinal (stretch-reflex) and supraspinal (operational space task-based) controllers were developed to test simulation-based hypotheses related to balance recovery and movement control. A corrective procedure (rectus femoris transfer surgery) was targeted for children experiencing stiff-knee gait and how this procedure ...


Scalable Hardware Efficient Deep Spatio-Temporal Inference Networks, Steven Robert Young Dec 2014

Scalable Hardware Efficient Deep Spatio-Temporal Inference Networks, Steven Robert Young

Doctoral Dissertations

Deep machine learning (DML) is a promising field of research that has enjoyed much success in recent years. Two of the predominant deep learning architectures studied in the literature are Convolutional Neural Networks (CNNs) and Deep Belief Networks (DBNs). Both have been successfully applied to many standard benchmarks with a primary focus on machine vision and speech processing domains.

Many real-world applications involve time-varying signals and, consequently, necessitate models that efficiently represent both temporal and spatial attributes. However, neither DBNs nor CNNs are designed to naturally capture temporal dependencies in observed data, often resulting in the inadequate transformation of spatio-temporal ...


Barrier Coverage In Wireless Sensor Networks, Zhibo Wang Aug 2014

Barrier Coverage In Wireless Sensor Networks, Zhibo Wang

Doctoral Dissertations

Barrier coverage is a critical issue in wireless sensor networks (WSNs) for security applications, which aims to detect intruders attempting to penetrate protected areas. However, it is difficult to achieve desired barrier coverage after initial random deployment of sensors because their locations cannot be controlled or predicted. In this dissertation, we explore how to leverage the mobility capacity of mobile sensors to improve the quality of barrier coverage.

We first study the 1-barrier coverage formation problem in heterogeneous sensor networks and explore how to efficiently use different types of mobile sensors to form a barrier with pre-deployed different types of ...


3d Robotic Sensing Of People: Human Perception, Representation And Activity Recognition, Hao Zhang Aug 2014

3d Robotic Sensing Of People: Human Perception, Representation And Activity Recognition, Hao Zhang

Doctoral Dissertations

The robots are coming. Their presence will eventually bridge the digital-physical divide and dramatically impact human life by taking over tasks where our current society has shortcomings (e.g., search and rescue, elderly care, and child education). Human-centered robotics (HCR) is a vision to address how robots can coexist with humans and help people live safer, simpler and more independent lives.

As humans, we have a remarkable ability to perceive the world around us, perceive people, and interpret their behaviors. Endowing robots with these critical capabilities in highly dynamic human social environments is a significant but very challenging problem in ...


Achieving Energy Efficiency On Networking Systems With Optimization Algorithms And Compressed Data Structures, Yanjun Yao May 2014

Achieving Energy Efficiency On Networking Systems With Optimization Algorithms And Compressed Data Structures, Yanjun Yao

Doctoral Dissertations

To cope with the increasing quantity, capacity and energy consumption of transmission and routing equipment in the Internet, energy efficiency of communication networks has attracted more and more attention from researchers around the world. In this dissertation, we proposed three methodologies to achieve energy efficiency on networking devices: the NP-complete problems and heuristics, the compressed data structures, and the combination of the first two methods.

We first consider the problem of achieving energy efficiency in Data Center Networks (DCN). We generalize the energy efficiency networking problem in data centers as optimal flow assignment problems, which is NP-complete, and then propose ...


Modeling, Analysis, And Control Of A Mobile Robot For In Vivo Fluoroscopy Of Human Joints During Natural Movements, Matthew A. Young May 2014

Modeling, Analysis, And Control Of A Mobile Robot For In Vivo Fluoroscopy Of Human Joints During Natural Movements, Matthew A. Young

Doctoral Dissertations

In this dissertation, the modeling, analysis and control of a multi-degree of freedom (mdof) robotic fluoroscope was investigated. A prototype robotic fluoroscope exists, and consists of a 3 dof mobile platform with two 2 dof Cartesian manipulators mounted symmetrically on opposite sides of the platform. One Cartesian manipulator positions the x-ray generator and the other Cartesian manipulator positions the x-ray imaging device. The robotic fluoroscope is used to x-ray skeletal joints of interest of human subjects performing natural movement activities. In order to collect the data, the Cartesian manipulators must keep the x-ray generation and imaging devices accurately aligned while ...


Feature Extraction And Recognition For Human Action Recognition, Jiajia Luo May 2014

Feature Extraction And Recognition For Human Action Recognition, Jiajia Luo

Doctoral Dissertations

How to automatically label videos containing human motions is the task of human action recognition. Traditional human action recognition algorithms use the RGB videos as input, and it is a challenging task because of the large intra-class variations of actions, cluttered background, possible camera movement, and illumination variations. Recently, the introduction of cost-effective depth cameras provides a new possibility to address difficult issues. However, it also brings new challenges such as noisy depth maps and time alignment. In this dissertation, effective and computationally efficient feature extraction and recognition algorithms are proposed for human action recognition.

At the feature extraction step ...


Online Multi-Stage Deep Architectures For Feature Extraction And Object Recognition, Derek Christopher Rose Aug 2013

Online Multi-Stage Deep Architectures For Feature Extraction And Object Recognition, Derek Christopher Rose

Doctoral Dissertations

Multi-stage visual architectures have recently found success in achieving high classification accuracies over image datasets with large variations in pose, lighting, and scale. Inspired by techniques currently at the forefront of deep learning, such architectures are typically composed of one or more layers of preprocessing, feature encoding, and pooling to extract features from raw images. Training these components traditionally relies on large sets of patches that are extracted from a potentially large image dataset. In this context, high-dimensional feature space representations are often helpful for obtaining the best classification performances and providing a higher degree of invariance to object transformations ...


Mitigation Of Catastrophic Interference In Neural Networks And Ensembles Using A Fixed Expansion Layer, Robert Austin Coop Aug 2013

Mitigation Of Catastrophic Interference In Neural Networks And Ensembles Using A Fixed Expansion Layer, Robert Austin Coop

Doctoral Dissertations

Catastrophic forgetting (also known in the literature as catastrophic interference) is the phenomenon by which learning systems exhibit a severe exponential loss of learned information when exposed to relatively small amounts of new training data. This loss of information is not caused by constraints due to the lack of resources available to the learning system, but rather is caused by representational overlap within the learning system and by side-effects of the training methods used. Catastrophic forgetting in auto-associative pattern recognition is a well-studied attribute of most parameterized supervised learning systems. A variation of this phenomenon, in the context of feedforward ...


An Expert System For Guitar Sheet Music To Guitar Tablature, Chuanjun He May 2013

An Expert System For Guitar Sheet Music To Guitar Tablature, Chuanjun He

Doctoral Dissertations

This project applies analysis, design and implementation of the Optical Music Recognition (OMR) to an expert system for transforming guitar sheet music to guitar tablature. The first part includes image processing and music semantic interpretation to interpret and transform sheet music or printed scores into editable and playable electronic form. Then after importing the electronic form of music into internal data structures, our application uses effective pruning to explore the entire search space to find the best guitar tablature. Also considered are alternate guitar tunings and transposition of the music to improve the resulting tablature.


Extending Structural Learning Paradigms For High-Dimensional Machine Learning And Analysis, Christopher Todd Symons Dec 2012

Extending Structural Learning Paradigms For High-Dimensional Machine Learning And Analysis, Christopher Todd Symons

Doctoral Dissertations

Structure-based machine-learning techniques are frequently used in extensions of supervised learning, such as active, semi-supervised, multi-modal, and multi-task learning. A common step in many successful methods is a structure-discovery process that is made possible through the addition of new information, which can be user feedback, unlabeled data, data from similar tasks, alternate views of the problem, etc. Learning paradigms developed in the above-mentioned fields have led to some extremely flexible, scalable, and successful multivariate analysis approaches. This success and flexibility offer opportunities to expand the use of machine learning paradigms to more complex analyses. In particular, while information is often ...


Exploring Computational Chemistry On Emerging Architectures, David Dewayne Jenkins Dec 2012

Exploring Computational Chemistry On Emerging Architectures, David Dewayne Jenkins

Doctoral Dissertations

Emerging architectures, such as next generation microprocessors, graphics processing units, and Intel MIC cards, are being used with increased popularity in high performance computing. Each of these architectures has advantages over previous generations of architectures including performance, programmability, and power efficiency. With the ever-increasing performance of these architectures, scientific computing applications are able to attack larger, more complicated problems. However, since applications perform differently on each of the architectures, it is difficult to determine the best tool for the job. This dissertation makes the following contributions to computer engineering and computational science. First, this work implements the computational chemistry variational ...