Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Computer Engineering

Evaluating Eeg–Emg Fusion-Based Classification As A Method For Improving Control Of Wearable Robotic Devices For Upper-Limb Rehabilitation, Jacob G. Tryon Aug 2023

Evaluating Eeg–Emg Fusion-Based Classification As A Method For Improving Control Of Wearable Robotic Devices For Upper-Limb Rehabilitation, Jacob G. Tryon

Electronic Thesis and Dissertation Repository

Musculoskeletal disorders are the biggest cause of disability worldwide, and wearable mechatronic rehabilitation devices have been proposed for treatment. However, before widespread adoption, improvements in user control and system adaptability are required. User intention should be detected intuitively, and user-induced changes in system dynamics should be unobtrusively identified and corrected. Developments often focus on model-dependent nonlinear control theory, which is challenging to implement for wearable devices.

One alternative is to incorporate bioelectrical signal-based machine learning into the system, allowing for simpler controller designs to be augmented by supplemental brain (electroencephalography/EEG) and muscle (electromyography/EMG) information. To extract user intention better, sensor …


Using Machine Learning To Assist Auditory Processing Evaluation, Hasitha Wimalarathna, Sangamanatha Veeranna, Minh Vu Duong, Chris Allan Prof, Sumit K. Agrawal, Prudence Allen, Jagath Samarabandu, Hanif M. Ladak Jul 2023

Using Machine Learning To Assist Auditory Processing Evaluation, Hasitha Wimalarathna, Sangamanatha Veeranna, Minh Vu Duong, Chris Allan Prof, Sumit K. Agrawal, Prudence Allen, Jagath Samarabandu, Hanif M. Ladak

Electrical and Computer Engineering Publications

Introduction: Approximately 0.2–5% of school-age children complain of listening difficulties in the absence of hearing loss. These children are often referred to an audiologist for an auditory processing disorder (APD) assessment. Adequate experience and training is necessary to arrive at an accurate diagnosis due to the heterogeneity of the disorder.

Objectives: The main goal of the study was to determine if machine learning (ML) can be used to analyze data from the APD clinical test battery to accurately categorize children with suspected APD into clinical sub-groups, similar to expert labels.

Methods: The study retrospectively collected data from 134 children referred …


Evaluating Algorithms Used For Fetal Brain Scan Segmentation, Connor Stewart Burgess Aug 2021

Evaluating Algorithms Used For Fetal Brain Scan Segmentation, Connor Stewart Burgess

Undergraduate Student Research Internships Conference

The goal for this project was to successfully segment a fetal brain scan (fetal scan) using the algorithms provided by the program Slicer3D. To better understand the hurdles that arose when segmenting a fetal scan, we first look at the segmentation of an adult brain scan. This will allow us to see the straightforward nature of a brain segmentation when a high quality, high resolution volume with distinct structures is available. After examining the adult brain scan, attention will be moved to the segmentation of the fetal scan, where we’ll first look at the algorithms used and methods followed. Finally …


Optimal Decomposition Strategy For Tree Edit Distance, Shaofeng Jiang Dec 2017

Optimal Decomposition Strategy For Tree Edit Distance, Shaofeng Jiang

Electronic Thesis and Dissertation Repository

An ordered labeled tree is a tree where the left-to-right order among siblings is significant. Given two ordered labeled trees, the edit distance between them is the minimum cost edit operations that convert one tree to the other.

In this thesis, we present an algorithm for the tree edit distance problem by using the optimal tree decomposition strategy. By combining the vertical compression of trees with optimal decomposition we can significantly reduce the running time of the algorithm. We compare our method with other methods both theoretically and experimentally. The test results show that our strategies on compressed trees are …


A Framework For Tumor Localization In Robot-Assisted Minimally Invasive Surgery, Nikita Chopra Feb 2017

A Framework For Tumor Localization In Robot-Assisted Minimally Invasive Surgery, Nikita Chopra

Electronic Thesis and Dissertation Repository

Manual palpation of tissue is frequently used in open surgery, e.g., for localization of tumors and buried vessels and for tissue characterization. The overall objective of this work is to explore how tissue palpation can be performed in Robot-Assisted Minimally Invasive Surgery (RAMIS) using laparoscopic instruments conventionally used in RAMIS. This thesis presents a framework where a surgical tool is moved teleoperatively in a manner analogous to the repetitive pressing motion of a finger during manual palpation. We interpret the changes in parameters due to this motion such as the applied force and the resulting indentation depth to accurately determine …


Expert-In-The-Loop Multilateral Telerobotics For Haptics-Enabled Motor Function And Skills Development, Mahya Shahbazi Jan 2017

Expert-In-The-Loop Multilateral Telerobotics For Haptics-Enabled Motor Function And Skills Development, Mahya Shahbazi

Electronic Thesis and Dissertation Repository

Among medical robotics applications are Robotics-Assisted Mirror Rehabilitation Therapy (RAMRT) and Minimally-Invasive Surgical Training (RAMIST) that extensively rely on motor function development. Haptics-enabled expert-in-the-loop motor function development for such applications is made possible through multilateral telerobotic frameworks. While several studies have validated the benefits of haptic interaction with an expert in motor learning, contradictory results have also been reported. This emphasizes the need for further in-depth studies on the nature of human motor learning through haptic guidance and interaction. The objective of this study was to design and evaluate expert-in-the-loop multilateral telerobotic frameworks with stable and human-safe control loops that …


Design And Performance Evaluation Of A Prototype Mrf-Based Haptic Interface For Medical Applications, Mehrdad Kermani Ph.D., P.Eng., Nima Najmaei, Ali Asadian, Rajni Patel Feb 2016

Design And Performance Evaluation Of A Prototype Mrf-Based Haptic Interface For Medical Applications, Mehrdad Kermani Ph.D., P.Eng., Nima Najmaei, Ali Asadian, Rajni Patel

Electrical and Computer Engineering Publications

This paper describes the construction and stability and transparency evaluation of a prototype two degrees-of-freedom (DoF) haptic interface, which takes ad-vantage of magneto-rheological fluid (MRF)-based clutches for actuation. These small-scale clutches were designed in our lab, and their evaluation were reported previously [1],[2]. MRF-based actuators exhibit superior characteristics,which can significantly contribute to transparency and stability of haptic devices. Based on these actuators, a distributed antagonistic configuration is used to develop the2-DoF haptic interface. This device is incorporated in a master–slave teleoperation setup intended for medical per-cutaneous interventions and soft-tissue palpation. Preliminary studies on the stability and transparency of the haptic …


Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena Oct 2012

Development Of A Novel Handheld Device For Active Compensation Of Physiological Tremor, Abhijit Saxena

Electronic Thesis and Dissertation Repository

In microsurgery, the human hand imposes certain limitations in accurately positioning the tip of a device such as scalpel. Any errors in the motion of the hand make microsurgical procedures difficult and involuntary motions such as hand tremors can make some procedures significantly difficult to perform. This is particularly true in the case of vitreoretinal microsurgery. The most familiar source of involuntary motion is physiological tremor. Real-time compensation of tremor is, therefore, necessary to assist surgeons to precisely position and manipulate the tool-tip to accurately perform a microsurgery. In this thesis, a novel handheld device (AID) is described for compensation …