Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 15 of 15

Full-Text Articles in Computer Engineering

Improving The Flexibility And Robustness Of Machine Tending Mobile Robots, Richard Ethan Hollingsworth Jan 2023

Improving The Flexibility And Robustness Of Machine Tending Mobile Robots, Richard Ethan Hollingsworth

Theses and Dissertations

While traditional manufacturing production cells consist of a fixed base robot repetitively performing tasks, the Industry 5.0 flexible manufacturing cell (FMC) aims to bring Autonomous Industrial Mobile Manipulators (AIMMs) to the factory floor. Composed of a wheeled base and a robot arm, these collaborative robots (cobots) operate alongside people while autonomously performing tasks at different workstations. AIMMs have been tested in real production systems, but the development of the control algorithms necessary for automating a robot that is a combination of two cobots remains an open challenge before the large scale adoption of this technology occurs in industry. Currently popular …


Wifi Sensing At The Edge Towards Scalable On-Device Wireless Sensing Systems, Steven M. Hernandez Jan 2023

Wifi Sensing At The Edge Towards Scalable On-Device Wireless Sensing Systems, Steven M. Hernandez

Theses and Dissertations

WiFi sensing offers a powerful method for tracking physical activities using the radio-frequency signals already found throughout our homes and offices. This novel sensing modality offers continuous and non-intrusive activity tracking since sensing can be performed (i) without requiring wearable sensors, (ii) outside the line-of-sight, and even (iii) through the wall. Furthermore, WiFi has become a ubiquitous technology in our computers, our smartphones, and even in low-cost Internet of Things devices. In this work, we consider how the ubiquity of these low-cost WiFi devices offer an unparalleled opportunity for improving the scalability of wireless sensing systems. Thus far, WiFi sensing …


Learning Robot Motion From Creative Human Demonstration, Charles C. Dietzel Jan 2022

Learning Robot Motion From Creative Human Demonstration, Charles C. Dietzel

Theses and Dissertations

This thesis presents a learning from demonstration framework that enables a robot to learn and perform creative motions from human demonstrations in real-time. In order to satisfy all of the functional requirements for the framework, the developed technique is comprised of two modular components, which integrate together to provide the desired functionality. The first component, called Dancing from Demonstration (DfD), is a kinesthetic learning from demonstration technique. This technique is capable of playing back newly learned motions in real-time, as well as combining multiple learned motions together in a configurable way, either to reduce trajectory error or to generate entirely …


Deep Learning Assisted Intelligent Visual And Vehicle Tracking Systems, Liang Xu Jan 2021

Deep Learning Assisted Intelligent Visual And Vehicle Tracking Systems, Liang Xu

Theses and Dissertations

Sensor fusion and tracking is the ability to bring together measurements from multiple sensors of the current and past time to estimate the current state of a system. The resulting state estimate is more accurate compared with the direct sensor measurement because it balances between the state prediction based on the assumed motion model and the noisy sensor measurement. Systems can then use the information provided by the sensor fusion and tracking process to support more-intelligent actions and achieve autonomy in a system like an autonomous vehicle. In the past, widely used sensor data are structured, which can be directly …


A General Framework For Characterizing And Evaluating Attacker Models For Cps Security Assessment, Christopher S. Deloglos, Christopher Deloglos Jan 2021

A General Framework For Characterizing And Evaluating Attacker Models For Cps Security Assessment, Christopher S. Deloglos, Christopher Deloglos

Theses and Dissertations

Characterizing the attacker’s perspective is essential to assessing the security posture and resilience of cyber-physical systems. The attacker’s perspective is most often achieved by cyber-security experts (e.g., red teams) who critically challenge and analyze the system from an adversarial stance. Unfortunately, the knowledge and experience of cyber-security experts can be inconsistent leading to situations where there are gaps in the security assessment of a given system. Structured security review processes (such as TAM, Mission Aware, STPA-SEC, and STPA-SafeSec) attempt to standardize the review processes to impart consistency across an organization or application domain. However, with most security review processes, the …


Systematic Model-Based Design Assurance And Property-Based Fault Injection For Safety Critical Digital Systems, Athira Varma Jayakumar Jan 2020

Systematic Model-Based Design Assurance And Property-Based Fault Injection For Safety Critical Digital Systems, Athira Varma Jayakumar

Theses and Dissertations

With advances in sensing, wireless communications, computing, control, and automation technologies, we are witnessing the rapid uptake of Cyber-Physical Systems across many applications including connected vehicles, healthcare, energy, manufacturing, smart homes etc. Many of these applications are safety-critical in nature and they depend on the correct and safe execution of software and hardware that are intrinsically subject to faults. These faults can be design faults (Software Faults, Specification faults, etc.) or physically occurring faults (hardware failures, Single-event-upsets, etc.). Both types of faults must be addressed during the design and development of these critical systems. Several safety-critical industries have widely adopted …


Energy Efficient Spintronic Device For Neuromorphic Computation, Md Ali Azam Jan 2019

Energy Efficient Spintronic Device For Neuromorphic Computation, Md Ali Azam

Theses and Dissertations

Future computing will require significant development in new computing device paradigms. This is motivated by CMOS devices reaching their technological limits, the need for non-Von Neumann architectures as well as the energy constraints of wearable technologies and embedded processors. The first device proposal, an energy-efficient voltage-controlled domain wall device for implementing an artificial neuron and synapse is analyzed using micromagnetic modeling. By controlling the domain wall motion utilizing spin transfer or spin orbit torques in association with voltage generated strain control of perpendicular magnetic anisotropy in the presence of Dzyaloshinskii-Moriya interaction (DMI), different positions of the domain wall are realized …


Toward Biologically-Inspired Self-Healing, Resilient Architectures For Digital Instrumentation And Control Systems And Embedded Devices, Shawkat Sabah Khairullah Jan 2018

Toward Biologically-Inspired Self-Healing, Resilient Architectures For Digital Instrumentation And Control Systems And Embedded Devices, Shawkat Sabah Khairullah

Theses and Dissertations

Digital Instrumentation and Control (I&C) systems in safety-related applications of next generation industrial automation systems require high levels of resilience against different fault classes. One of the more essential concepts for achieving this goal is the notion of resilient and survivable digital I&C systems. In recent years, self-healing concepts based on biological physiology have received attention for the design of robust digital systems. However, many of these approaches have not been architected from the outset with safety in mind, nor have they been targeted for the automation community where a significant need exists. This dissertation presents a new self-healing digital …


A Hierarchical Architectural Framework For Securing Unmanned Aerial Systems, Matthew Leccadito Jan 2017

A Hierarchical Architectural Framework For Securing Unmanned Aerial Systems, Matthew Leccadito

Theses and Dissertations

Unmanned Aerial Systems (UAS) are becoming more widely used in the new era of evolving technology; increasing performance while decreasing size, weight, and cost. A UAS equipped with a Flight Control System (FCS) that can be used to fly semi- or fully-autonomous is a prime example of a Cyber Physical and Safety Critical system. Current Cyber-Physical defenses against malicious attacks are structured around security standards for best practices involving the development of protocols and the digital software implementation. Thus far, few attempts have been made to embed security into the architecture of the system considering security as a holistic problem. …


Respiratory Prediction And Image Quality Improvement Of 4d Cone Beam Ct And Mri For Lung Tumor Treatments, Seonyeong Park Jan 2017

Respiratory Prediction And Image Quality Improvement Of 4d Cone Beam Ct And Mri For Lung Tumor Treatments, Seonyeong Park

Theses and Dissertations

Identification of accurate tumor location and shape is highly important in lung cancer radiotherapy, to improve the treatment quality by reducing dose delivery errors. Because a lung tumor moves with the patient's respiration, breathing motion should be correctly analyzed and predicted during the treatment for prevention of tumor miss or undesirable treatment toxicity. Besides, in Image-Guided Radiation Therapy (IGRT), the tumor motion causes difficulties not only in delivering accurate dose, but also in assuring superior quality of imaging techniques such as four-dimensional (4D) Cone Beam Computed Tomography (CBCT) and 4D Magnetic Resonance Imaging (MRI). Specifically, 4D CBCT used in CBCT …


Omni-Directional Infrared 3d Reconstruction And Tracking Of Human Targets, Emrah Benli Jan 2017

Omni-Directional Infrared 3d Reconstruction And Tracking Of Human Targets, Emrah Benli

Theses and Dissertations

Omni-directional (O-D) infrared (IR) vision is an effective capability for mobile systems in robotics, due to its advantages: illumination invariance, wide field-of-view, ease of identifying heat-emitting objects, and long term tracking without interruption. Unfortunately, O-D IR sensors have low resolution, low frame rates, high cost, sensor noise, and an increase in tracking time. In order to overcome these disadvantages, we propose an autonomous system application in indoor scenarios including 1) Dynamic 3D Reconstruction (D3DR) of the target view in real time images, 2) Human Behavior-based Target Tracking from O-D thermal images, 3) Thermal Multisensor Fusion (TMF), and 4) Visual Perception …


Autonomous Navigation With Obstacle Avoidance For Unmanned Aircraft Systems Using Milp, James A. Devens Jan 2016

Autonomous Navigation With Obstacle Avoidance For Unmanned Aircraft Systems Using Milp, James A. Devens

Theses and Dissertations

Autonomous coordination among multiple aerial vehicles to ensure a collision free airspace is a critical aspect of today’s airspace. With the rise of Unmanned Aerial Vehicles (UAVs) in the military and commercial sectors, obstacle avoidance in a densely populated airspace is necessary. This thesis investigates finding optimal or near-optimal trajectories in real-time for aircraft in complex airspaces containing a large number of obstacles. The solution for the trajectories is described as a linear program subject to mixed integer constraints, known as a Mixed Integer Linear Program (MILP). The resulting MILP problem is solved in real time using a well-known, public …


In-Shoe Plantar Pressure System To Investigate Ground Reaction Force Using Android Platform, Ahmed A. Mostfa Jan 2016

In-Shoe Plantar Pressure System To Investigate Ground Reaction Force Using Android Platform, Ahmed A. Mostfa

Theses and Dissertations

Human footwear is not yet designed to optimally relieve pressure on the heel of the foot. Proper foot pressure assessment requires personal training and measurements by specialized machinery. This research aims to investigate and hypothesize about Preferred Transition Speed (PTS) and to classify the gait phase of explicit variances in walking patterns between different subjects. An in-shoe wearable pressure system using Android application was developed to investigate walking patterns and collect data on Activities of Daily Living (ADL). In-shoe circuitry used Flexi-Force A201 sensors placed at three major areas: heel contact, 1st metatarsal, and 5th metatarsal with a PIC16F688 microcontroller …


Optimizing Virtual Machine I/O Performance In Cloud Environments, Tao Lu Jan 2016

Optimizing Virtual Machine I/O Performance In Cloud Environments, Tao Lu

Theses and Dissertations

Maintaining closeness between data sources and data consumers is crucial for workload I/O performance. In cloud environments, this kind of closeness can be violated by system administrative events and storage architecture barriers. VM migration events are frequent in cloud environments. VM migration changes VM runtime inter-connection or cache contexts, significantly degrading VM I/O performance. Virtualization is the backbone of cloud platforms. I/O virtualization adds additional hops to workload data access path, prolonging I/O latencies. I/O virtualization overheads cap the throughput of high-speed storage devices and imposes high CPU utilizations and energy consumptions to cloud infrastructures. To maintain the closeness between …


Design Of An All-In-One Embedded Flight Control System, Joel D. Elmore Jan 2015

Design Of An All-In-One Embedded Flight Control System, Joel D. Elmore

Theses and Dissertations

This thesis describes an all-in-one flight control system (FCS) that was designed for unmanned aerial vehicles (UAVs). The project focuses on the embedded hardware aspect of a stand-alone system with low-cost and reliability in mind.