Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Digital Communications and Networking

CubeSat

Articles 1 - 4 of 4

Full-Text Articles in Computer Engineering

Cloudsat: Iot Approach To Small Satellite Ground Infrastructure, Brian Zufelt Nov 2018

Cloudsat: Iot Approach To Small Satellite Ground Infrastructure, Brian Zufelt

Electrical and Computer Engineering ETDs

Over the last decade, the cost of space access has dramatically decreased with the creation of the CubeSat standard. The CubeSat standard defines the structural requirements for an on-orbit deployer and satellite to be placed into orbit. The average cost of creating a space mission with the CubeSat standard can range from $200 thousand to over $3 million. This lower cost has allowed many Universities, and small businesses to create their own space programs. However, a significant portion of the investment for any new space asset is the development of the ground system to communicate with the satellite. These costs …


A Software Defined Radio Communications System For A Small Spacecraft, Michael Hlas, Jeremy Straub, Ronald Marsh Apr 2015

A Software Defined Radio Communications System For A Small Spacecraft, Michael Hlas, Jeremy Straub, Ronald Marsh

Jeremy Straub

Software defined radios (SDRs) are poised to significantly enhance the future of small spacecraft communications. They allow signal processing to be performed on a computer by software rather than requiring dedicated hardware. The OpenOrbiter SDR (discussed in [1] and refined in [2]) takes data from the flight computer and converts it into an analog signal that is transmitted via the spacecraft antenna. Because the signal processing is done in software, the radio can be easily reconfigured. This process is done in reverse for incoming transmissions, which are received by the SDR and decoded by software. Figures 1 and 2 provide …


Creating A Low-Cost Radio For An Open Cubesat, Michael Wegerson, Jeremy Straub, Ronald Marsh Apr 2015

Creating A Low-Cost Radio For An Open Cubesat, Michael Wegerson, Jeremy Straub, Ronald Marsh

Jeremy Straub

A reliable communication system is key to the success of a CubeSat mission, allowing for data to be trans-mitted to the ground station and commands to be up-loaded to the satellite. To satisfy this need, the OpenOrbiter satellite (a 1-U CubeSat [1], being devel-oped with a target parts budget of under $5,000 [2]) is leveraging previously space-tested [3], low-cost trans-ceiver design which is based on the SI 4463 IC unit. This board design will be included in the publically available Open Framework for Educational Nanosatel-lites (OPEN) allowing others to modify, enhance and/or make use of the design in the future.


Small Satellite Communications Security And Student Learning In The Development Of Ground Station Software, Scott Kerlin, Jeremy Straub, Jacob Huhn, Alexander Lewis Mar 2015

Small Satellite Communications Security And Student Learning In The Development Of Ground Station Software, Scott Kerlin, Jeremy Straub, Jacob Huhn, Alexander Lewis

Jeremy Straub

Communications security is gaining importance as small spacecraft include actuator capabilities (i.e., propulsion), payloads which could be misappropriated (i.e., high resolution cameras), and research missions with high value/cost. However, security is limited by capability, interoperability and regulation. Additionally, as the small satellite community becomes more mainstream and diverse, the lack of cheap, limited-to-no configuration, pluggable security modules for small satellites also presents a limit for user adoption of security.

This paper discusses a prospective approach for incorporating robust security into a student-developed ground station created at the University of North Dakota as part of a Computer Science Department senior design …