Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 51

Full-Text Articles in Computer Engineering

Quantifying Dds-Cerberus Network Control Overhead, Andrew T. Park, Nathaniel R. Peck, Richard Dill, Douglas D. Hodson, Michael R. Grimaila, Wayne C. Henry Sep 2022

Quantifying Dds-Cerberus Network Control Overhead, Andrew T. Park, Nathaniel R. Peck, Richard Dill, Douglas D. Hodson, Michael R. Grimaila, Wayne C. Henry

Faculty Publications

Securing distributed device communication is critical because the private industry and the military depend on these resources. One area that adversaries target is the middleware, which is the medium that connects different systems. This paper evaluates a novel security layer, DDS-Cerberus (DDS-C), that protects in-transit data and improves communication efficiency on data-first distribution systems. This research contributes a distributed robotics operating system testbed and designs a multifactorial performance-based experiment to evaluate DDS-C efficiency and security by assessing total packet traffic generated in a robotics network. The performance experiment follows a 2:1 publisher to subscriber node ratio, varying the number of …


Securing Information On A Web Application System To Facilitate Online Blood Donation Booking, Hrishitva Patel Aug 2022

Securing Information On A Web Application System To Facilitate Online Blood Donation Booking, Hrishitva Patel

Faculty Publications

Blood donation has saved many lives in the past. According to statistics presented by the American Red Cross, a patient is in need of a blood transfusion every two seconds. There are many benefits that arise from blood donation to both the donor and the blood recipients. With blood donation, cancer patients, people involved in accidents, or those battling diseases that require blood donation have access to enough blood to sustain their survival. There is a need to digitize the blood donation booking to facilitate blood donation across the United States, and ensure patients in need of blood, receive their …


Effect Of Connection State & Transport/Application Protocol On The Machine Learning Outlier Detection Of Network Intrusions, George Yuchi [*], Torrey J. Wagner, Paul Auclair, Brent T. Langhals Jan 2022

Effect Of Connection State & Transport/Application Protocol On The Machine Learning Outlier Detection Of Network Intrusions, George Yuchi [*], Torrey J. Wagner, Paul Auclair, Brent T. Langhals

Faculty Publications

The majority of cyber infiltration & exfiltration intrusions leave a network footprint, and due to the multi-faceted nature of detecting network intrusions, it is often difficult to detect. In this work a Zeek-processed PCAP dataset containing the metadata of 36,667 network packets was modeled with several machine learning algorithms to classify normal vs. anomalous network activity. Principal component analysis with a 10% contamination factor was used to identify anomalous behavior. Models were created using recursive feature elimination on logistic regression and XGBClassifier algorithms, and also using Bayesian and bandit optimization of neural network hyperparameters. These models were trained on a …


Shifting Satellite Control Paradigms: Operational Cybersecurity In The Age Of Megaconstellations, Carl A. Poole [*], Robert A. Bettinger, Mark Reith Oct 2021

Shifting Satellite Control Paradigms: Operational Cybersecurity In The Age Of Megaconstellations, Carl A. Poole [*], Robert A. Bettinger, Mark Reith

Faculty Publications

The introduction of automated satellite control systems into a space-mission environment historically dominated by human-in-the-loop operations will require a more focused understanding of cybersecurity measures to ensure space system safety and security. On the ground-segment side of satellite control, the debut of privately owned communication antennas for rent and a move to cloud-based operations or mission centers will bring new requirements for cyber protection for both Department of Defense and commercial satellite operations alike. It is no longer a matter of whether automation will be introduced to satellite operations, but how quickly satellite operators can adapt to the onset of …


A Statistical Impulse Response Model Based On Empirical Characterization Of Wireless Underground Channel, Abdul Salam, Mehmet C. Vuran, Suat Irmak Sep 2020

A Statistical Impulse Response Model Based On Empirical Characterization Of Wireless Underground Channel, Abdul Salam, Mehmet C. Vuran, Suat Irmak

Faculty Publications

Wireless underground sensor networks (WUSNs) are becoming ubiquitous in many areas. The design of robust systems requires extensive understanding of the underground (UG) channel characteristics. In this paper, an UG channel impulse response is modeled and validated via extensive experiments in indoor and field testbed settings. The three distinct types of soils are selected with sand and clay contents ranging from $13\%$ to $86\%$ and $3\%$ to $32\%$, respectively. The impacts of changes in soil texture and soil moisture are investigated with more than $1,200$ measurements in a novel UG testbed that allows flexibility in soil moisture control. Moreover, the …


Decision Agriculture, Abdul Salam, Usman Raza Aug 2020

Decision Agriculture, Abdul Salam, Usman Raza

Faculty Publications

In this chapter, the latest developments in the field of decision agriculture are discussed. The practice of management zones in digital agriculture is described for efficient and smart faming. Accordingly, the methodology for delineating management zones is presented. Modeling of decision support systems is explained along with discussion of the issues and challenges in this area. Moreover, the precision agriculture technology is also considered. Moreover, the chapter surveys the state of the decision agriculture technologies in the countries such as Bulgaria, Denmark, France, Israel, Malaysia, Pakistan, United Kingdom, Ukraine, and Sweden. Finally, different field factors such as GPS accuracy and …


Underground Phased Arrays And Beamforming Applications, Abdul Salam, Usman Raza Aug 2020

Underground Phased Arrays And Beamforming Applications, Abdul Salam, Usman Raza

Faculty Publications

This chapter presents a framework for adaptive beamforming in underground communication. The wireless propagation is thoroughly analyzed to develop a model using the soil moisture as an input parameter to provide feedback mechanism while enhancing the system performance. The working of array element in the soil is analyzed. Moreover, the effect of soil texture and soil moisture on the resonant frequency and return loss is studied in detail. The wave refraction from the soil–air interface highly degrades the performance of the system. Furthermore, to beam steering is done to achieve high gain for lateral component improving the UG communication. The …


Signals In The Soil: An Introduction To Wireless Underground Communications, Abdul Salam, Usman Raza Aug 2020

Signals In The Soil: An Introduction To Wireless Underground Communications, Abdul Salam, Usman Raza

Faculty Publications

In this chapter, wireless underground (UG) communications are introduced. A detailed overview of WUC is given. A comprehensive review of research challenges in WUC is presented. The evolution of underground wireless is also discussed. Moreover, different component of UG communications is wireless. The WUC system architecture is explained with a detailed discussion of the anatomy of an underground mote. The examples of UG wireless communication systems are explored. Furthermore, the differences of UG wireless and over-the-air wireless are debated. Different types of wireless underground channel (e.g., In-Soil, Soil-to-Air, and Air-to-Soil) are reported as well.


Underground Wireless Channel Bandwidth And Capacity, Abdul Salam, Usman Raza Aug 2020

Underground Wireless Channel Bandwidth And Capacity, Abdul Salam, Usman Raza

Faculty Publications

The UG channel bandwidth and capacity are vital parameters in wireless underground communication system design. In this chapter, a comprehensive analysis of the wireless underground channel capacity is presented. The impact of soil on return loss, bandwidth, and path loss is discussed. The results of underground multi-carrier modulation capacity are also outlined. Moreover, the single user capacity and multi-carrier capacity are also introduced with an in-depth treatment of soil texture, soil moisture, and distance effects on channel capacity. Finally, the chapter is concluded with a discussion of challenges and open research issues.


Signals In The Soil: Underground Antennas, Abdul Salam, Usman Raza Aug 2020

Signals In The Soil: Underground Antennas, Abdul Salam, Usman Raza

Faculty Publications

Antenna is a major design component of Internet of Underground Things (IOUT) communication system. The use of antenna, in IOUT, differs from traditional communication in that it is buried in the soil. Therefore, one of the main challenges, in IOUT applications, is to establish a reliable communication. To that end, there is a need of designing an underground-specific antenna. Three major factors that can impact the performance of a buried antenna are: (1) effect of high soil permittivity changes the wavelength of EM waves, (2) variations in soil moisture with time affecting the permittivity of the soil, and (3) difference …


Soil Moisture And Permittivity Estimation, Abdul Salam, Usman Raza Aug 2020

Soil Moisture And Permittivity Estimation, Abdul Salam, Usman Raza

Faculty Publications

The soil moisture and permittivity estimation is vital for the success of the variable rate approaches in the field of the decision agriculture. In this chapter, the development of a novel permittivity estimation and soil moisture sensing approach is presented. The empirical setup and experimental methodology for the power delay measurements used in model are introduced. Moreover, the performance analysis is explained that includes the model validation and error analysis. The transfer functions are reported as well for soil moisture and permittivity estimation. Furthermore, the potential applications of the developed approach in different disciplines are also examined.


Current Advances In Internet Of Underground Things, Abdul Salam, Usman Raza Aug 2020

Current Advances In Internet Of Underground Things, Abdul Salam, Usman Raza

Faculty Publications

The latest developments in Internet of Underground Things are covered in this chapter. First, the IOUT Architecture is discussed followed by the explanation of the challenges being faced in this paradigm. Moreover, a comprehensive coverage of the different IOUT components is presented that includes communications, sensing, and system integration with the cloud. An in-depth coverage of the applications of the IOUT in various disciplines is also surveyed. These applications include areas such as decision agriculture, pipeline monitoring, border control, and oil wells.


Signals In The Soil: Subsurface Sensing, Abdul Salam, Usman Raza Aug 2020

Signals In The Soil: Subsurface Sensing, Abdul Salam, Usman Raza

Faculty Publications

In this chapter, novel subsurface soil sensing approaches are presented for monitoring and real-time decision support system applications. The methods, materials, and operational feasibility aspects of soil sensors are explored. The soil sensing techniques covered in this chapter include aerial sensing, in-situ, proximal sensing, and remote sensing. The underlying mechanism used for sensing is also examined as well. The sensor selection and calibration techniques are described in detail. The chapter concludes with discussion of soil sensing challenges.


Autonomous Irrigation Management In Decision Agriculture, Abdul Salam, Usman Raza Aug 2020

Autonomous Irrigation Management In Decision Agriculture, Abdul Salam, Usman Raza

Faculty Publications

In this chapter, the important application of autonomous irrigation management in the field decision agriculture is discussed. The different types of sensor-guided irrigation systems are presented that includes center pivot systems and drip irrigation systems. Their sensing and actuator components are with detailed focus on real-time decision-making and integration to the cloud. This chapter also presents irrigation control systems which takes, as an input, soil moisture and temperature from IOUT and weather data from Internet and communicate with center pivot based irrigation systems. Moreover, the system architecture is explored where development of the nodes including sensing and actuators is presented. …


Variable Rate Applications In Decision Agriculture, Abdul Salam, Usman Raza Aug 2020

Variable Rate Applications In Decision Agriculture, Abdul Salam, Usman Raza

Faculty Publications

In this chapter, the variable rate applications (VRA) are presented for the field of decision agriculture. The characteristics of VRA control systems are described along with control hardware. Different types of VRA systems are discussed (e.g., liquid VRA systems and dry VRA systems). A case study is also explored in this regard. Moreover, recent advances and future trends are also outlined. Accordingly, a sustainable variable-rate irrigation scheduling is studied where different hardware and software component of the cyber-physical system are considered. Finally, chapter is concluded with a novel sensor deployment methodology.


Zenneck Waves In Decision Agriculture: An Empirical Verification And Application In Em-Based Underground Wireless Power Transfer, Usman Raza, Abdul Salam May 2020

Zenneck Waves In Decision Agriculture: An Empirical Verification And Application In Em-Based Underground Wireless Power Transfer, Usman Raza, Abdul Salam

Faculty Publications

In this article, the results of experiments for the observation of Zenneck surface waves in sub GHz frequency range using dipole antennas are presented. Experiments are conducted over three different soils for communications distances of up to 1 m. This empirical analysis confirms the existence of Zenneck waves over the soil surface. Through the power delay profile (PDP) analysis, it has been shown that other subsurface components exhibit rapid decay as compared to the Zenneck waves. A potential application of the Zenneck waves for energy transmission in the area of decision agriculture is explored. Accordingly, a novel wireless through-the-soil power …


On-Site And External Energy Harvesting In Underground Wireless, Usman Raza, Abdul Salam Apr 2020

On-Site And External Energy Harvesting In Underground Wireless, Usman Raza, Abdul Salam

Faculty Publications

Energy efficiency is vital for uninterrupted long-term operation of wireless underground communication nodes in the field of decision agriculture. In this paper, energy harvesting and wireless power transfer techniques are discussed with applications in underground wireless communications (UWC). Various external wireless power transfer techniques are explored. Moreover, key energy harvesting technologies are presented that utilize available energy sources in the field such as vibration, solar, and wind. In this regard, the Electromagnetic(EM)- and Magnetic Induction(MI)-based approaches are explained. Furthermore, the vibration-based energy harvesting models are reviewed as well. These energy harvesting approaches lead to design of an efficient wireless underground …


Wireless Underground Communications In Sewer And Stormwater Overflow Monitoring: Radio Waves Through Soil And Asphalt Medium, Usman Raza, Abdul Salam Feb 2020

Wireless Underground Communications In Sewer And Stormwater Overflow Monitoring: Radio Waves Through Soil And Asphalt Medium, Usman Raza, Abdul Salam

Faculty Publications

Storm drains and sanitary sewers are prone to backups and overflows due to extra amount wastewater entering the pipes. To prevent that, it is imperative to efficiently monitor the urban underground infrastructure. The combination of sensors system and wireless underground communication system can be used to realize urban underground IoT applications, e.g., storm water and wastewater overflow monitoring systems. The aim of this article is to establish a feasibility of the use of wireless underground communications techniques, and wave propagation through the subsurface soil and asphalt layers, in an underground pavement system for storm water and sewer overflow monitoring application. …


Design Of Subsurface Phased Array Antennas For Digital Agriculture Application, Abdul Salam Jan 2020

Design Of Subsurface Phased Array Antennas For Digital Agriculture Application, Abdul Salam

Faculty Publications

With the advancement in subsurface communications technology, an overarching solution to a underground phased array antenna design for digital agriculture requires interdisciplinary research involving topics ranging from insights on the constitutive parameters of the soil medium and impact of soil moisture on the array factor to antenna measurements and subsurface communication system design. In this paper, based on the analysis of underground radio wave propagation in subsurface radio channel, a phased array antenna design is presented that uses water content information and beam steering mechanisms to improve efficiency and communication range of wireless underground communications. It is shown the subsurface …


Internet Of Things For Sustainable Human Health, Abdul Salam Jan 2020

Internet Of Things For Sustainable Human Health, Abdul Salam

Faculty Publications

The sustainable health IoT has the strong potential to bring tremendous improvements in human health and well-being through sensing, and monitoring of health impacts across the whole spectrum of climate change. The sustainable health IoT enables development of a systems approach in the area of human health and ecosystem. It allows integration of broader health sub-areas in a bigger archetype for improving sustainability in health in the realm of social, economic, and environmental sectors. This integration provides a powerful health IoT framework for sustainable health and community goals in the wake of changing climate. In this chapter, a detailed description …


Internet Of Things For Environmental Sustainability And Climate Change, Abdul Salam Jan 2020

Internet Of Things For Environmental Sustainability And Climate Change, Abdul Salam

Faculty Publications

Our world is vulnerable to climate change risks such as glacier retreat, rising temperatures, more variable and intense weather events (e.g., floods, droughts, and frosts), deteriorating mountain ecosystems, soil degradation, and increasing water scarcity. However, there are big gaps in our understanding of changes in regional climate and how these changes will impact human and natural systems, making it difficult to anticipate, plan, and adapt to the coming changes. The IoT paradigm in this area can enhance our understanding of regional climate by using technology solutions, while providing the dynamic climate elements based on integrated environmental sensing and communications that …


Internet Of Things For Sustainable Community Development: Introduction And Overview, Abdul Salam Jan 2020

Internet Of Things For Sustainable Community Development: Introduction And Overview, Abdul Salam

Faculty Publications

The two-third of the city-dwelling world population by 2050 poses numerous global challenges in the infrastructure and natural resource management domains (e.g., water and food scarcity, increasing global temperatures, and energy issues). The IoT with integrated sensing and communication capabilities has the strong potential for the robust, sustainable, and informed resource management in the urban and rural communities. In this chapter, the vital concepts of sustainable community development are discussed. The IoT and sustainability interactions are explained with emphasis on Sustainable Development Goals (SDGs) and communication technologies. Moreover, IoT opportunities and challenges are discussed in the context of sustainable community …


Internet Of Things In Agricultural Innovation And Security, Abdul Salam Jan 2020

Internet Of Things In Agricultural Innovation And Security, Abdul Salam

Faculty Publications

The agricultural Internet of Things (Ag-IoT) paradigm has tremendous potential in transparent integration of underground soil sensing, farm machinery, and sensor-guided irrigation systems with the complex social network of growers, agronomists, crop consultants, and advisors. The aim of the IoT in agricultural innovation and security chapter is to present agricultural IoT research and paradigm to promote sustainable production of safe, healthy, and profitable crop and animal agricultural products. This chapter covers the IoT platform to test optimized management strategies, engage farmer and industry groups, and investigate new and traditional technology drivers that will enhance resilience of the farmers to the …


Internet Of Things For Water Sustainability, Abdul Salam Jan 2020

Internet Of Things For Water Sustainability, Abdul Salam

Faculty Publications

The water is a finite resource. The issue of sustainable withdrawal of freshwater is a vital concern being faced by the community. There is a strong connection between the energy, food, and water which is referred to as water-food-energy nexus. The agriculture industry and municipalities are struggling to meet the demand of water supply. This situation is particularly exacerbated in the developing countries. The projected increase in world population requires more fresh water resources. New technologies are being developed to reduce water usage in the field of agriculture (e.g., sensor guided autonomous irrigation management systems). Agricultural water withdrawal is also …


Internet Of Things For Sustainability: Perspectives In Privacy, Cybersecurity, And Future Trends, Abdul Salam Jan 2020

Internet Of Things For Sustainability: Perspectives In Privacy, Cybersecurity, And Future Trends, Abdul Salam

Faculty Publications

In the sustainability IoT, the cybersecurity risks to things, sensors, and monitoring systems are distinct from the conventional networking systems in many aspects. The interaction of sustainability IoT with the physical world phenomena (e.g., weather, climate, water, and oceans) is mostly not found in the modern information technology systems. Accordingly, actuation, the ability of these devices to make changes in real world based on sensing and monitoring, requires special consideration in terms of privacy and security. Moreover, the energy efficiency, safety, power, performance requirements of these device distinguish them from conventional computers systems. In this chapter, the cybersecurity approaches towards …


Internet Of Things In Sustainable Energy Systems, Abdul Salam Jan 2020

Internet Of Things In Sustainable Energy Systems, Abdul Salam

Faculty Publications

Our planet has abundant renewable and conventional energy resources but technological capability and capacity gaps coupled with water-energy needs limit the benefits of these resources to citizens. Through IoT technology solutions and state-of-the-art IoT sensing and communications approaches, the sustainable energy-related research and innovation can bring a revolution in this area. Moreover, by the leveraging current infrastructure, including renewable energy technologies, microgrids, and power-to-gas (P2G) hydrogen systems, the Internet of Things in sustainable energy systems can address challenges in energy security to the community, with a minimal trade-off to environment and culture. In this chapter, the IoT in sustainable energy …


Internet Of Things For Sustainable Mining, Abdul Salam Jan 2020

Internet Of Things For Sustainable Mining, Abdul Salam

Faculty Publications

The sustainable mining Internet of Things deals with the applications of IoT technology to the coupled needs of sustainable recovery of metals and a healthy environment for a thriving planet. In this chapter, the IoT architecture and technology is presented to support development of a digital mining platform emphasizing the exploration of rock–fluid–environment interactions to develop extraction methods with maximum economic benefit, while maintaining and preserving both water quantity and quality, soil, and, ultimately, human health. New perspectives are provided for IoT applications in developing new mineral resources, improved management of tailings, monitoring and mitigating contamination from mining. Moreover, tools …


Internet Of Things In Water Management And Treatment, Abdul Salam Jan 2020

Internet Of Things In Water Management And Treatment, Abdul Salam

Faculty Publications

The goal of the water security IoT chapter is to present a comprehensive and integrated IoT based approach to environmental quality and monitoring by generating new knowledge and innovative approaches that focus on sustainable resource management. Mainly, this chapter focuses on IoT applications in wastewater and stormwater, and the human and environmental consequences of water contaminants and their treatment. The IoT applications using sensors for sewer and stormwater monitoring across networked landscapes, water quality assessment, treatment, and sustainable management are introduced. The studies of rate limitations in biophysical and geochemical processes that support the ecosystem services related to water quality …


Subsurface Mimo: A Beamforming Design In Internet Of Underground Things For Digital Agriculture Applications, Abdul Salam Aug 2019

Subsurface Mimo: A Beamforming Design In Internet Of Underground Things For Digital Agriculture Applications, Abdul Salam

Faculty Publications

In underground (UG) multiple-input and multiple-output (MIMO), the transmit beamforming is used to focus energy in the desired direction. There are three different paths in the underground soil medium through which the waves propagates to reach at the receiver. When the UG receiver receives a desired data stream only from the desired path, then the UG MIMO channel becomes three path (lateral, direct, and reflected) interference channel. Accordingly, the capacity region of the UG MIMO three path interference channel and degrees of freedom (multiplexing gain of this MIMO channel requires careful modeling). Therefore, expressions are required for the degree of …


A Path Loss Model For Through The Soil Wireless Communications In Digital Agriculture, Abdul Salam Jul 2019

A Path Loss Model For Through The Soil Wireless Communications In Digital Agriculture, Abdul Salam

Faculty Publications

In this paper, a path loss model is developed to predict the impact of soil type, soil moisture, operation frequency, distance, and burial depth of sensors for through-the-soil wireless communications channel. The soil specific model is developed based on empirical measurements in a testbed and field settings. The model can be used in different soils for a frequency range of 100MHz to 1GHz. The standard deviation between measured and predicted path loss is from 4-6dB in the silt loam, sandy, and silty clay loam soil types. The model leads to development of sensor-guided irrigation system in the field of digital …