Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer and Systems Architecture

2011

Data structures (Computer science)

Articles 1 - 2 of 2

Full-Text Articles in Computer Engineering

Resizable, Scalable, Concurrent Hash Tables, Josh Triplett, Paul E. Mckenney, Jonathan Walpole Jun 2011

Resizable, Scalable, Concurrent Hash Tables, Josh Triplett, Paul E. Mckenney, Jonathan Walpole

Computer Science Faculty Publications and Presentations

We present algorithms for shrinking and expanding a hash table while allowing concurrent, wait-free, linearly scalable lookups. These resize algorithms allow the hash table to maintain constant-time performance as the number of entries grows, and reclaim memory as the number of entries decreases, without delaying or disrupting readers.

We implemented our algorithms in the Linux kernel, to test their performance and scalability. Benchmarks show lookup scalability improved 125x over readerwriter locking, and 56% over the current state-of-the-art for Linux, with no performance degradation for lookups during a resize.

To achieve this performance, this hash table implementation uses a new concurrent …


Relativistic Red-Black Trees, Philip William Howard, Jonathan Walpole Jan 2011

Relativistic Red-Black Trees, Philip William Howard, Jonathan Walpole

Computer Science Faculty Publications and Presentations

Operating system performance and scalability on sharedmemory many-core systems depends critically on efficient access to shared data structures. Scalability has proven difficult to achieve for many data structures. In this paper we present a novel and highly scalable concurrent red-black tree. Red-black trees are widely used in operating systems, but typically exhibit poor scalability. Our red-black tree has linear read scalability, uncontended read performance that is at least 25% faster than other known approaches, and deterministic lookup times for a given tree size, making it suitable for realtime applications.