Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

Machine Learning

Articles 1 - 28 of 28

Full-Text Articles in Computer Engineering

Identifying Hourly Traffic Patterns With Python Deep Learning, Christopher L. Leavitt Jun 2019

Identifying Hourly Traffic Patterns With Python Deep Learning, Christopher L. Leavitt

Computer Engineering

This project was designed to explore and analyze the potential abilities and usefulness of applying machine learning models to data collected by parking sensors at a major metro shopping mall. By examining patterns in rates at which customer enter and exit parking garages on the campus of the Bellevue Collection shopping mall in Bellevue, Washington, a recurrent neural network will use data points from the previous hours will be trained to forecast future trends.


Comparative Study Of Sentiment Analysis With Product Reviews Using Machine Learning And Lexicon-Based Approaches, Heidi Nguyen, Aravind Veluchamy, Mamadou Diop, Rashed Iqbal Jan 2019

Comparative Study Of Sentiment Analysis With Product Reviews Using Machine Learning And Lexicon-Based Approaches, Heidi Nguyen, Aravind Veluchamy, Mamadou Diop, Rashed Iqbal

SMU Data Science Review

In this paper, we present a comparative study of text sentiment classification models using term frequency inverse document frequency vectorization in both supervised machine learning and lexicon-based techniques. There have been multiple promising machine learning and lexicon-based techniques, but the relative goodness of each approach on specific types of problems is not well understood. In order to offer researchers comprehensive insights, we compare a total of six algorithms to each other. The three machine learning algorithms are: Logistic Regression (LR), Support Vector Machine (SVM), and Gradient Boosting. The three lexicon-based algorithms are: Valence Aware Dictionary and Sentiment Reasoner (VADER), Pattern ...


Improving Vix Futures Forecasts Using Machine Learning Methods, James Hosker, Slobodan Djurdjevic, Hieu Nguyen, Robert Slater Jan 2019

Improving Vix Futures Forecasts Using Machine Learning Methods, James Hosker, Slobodan Djurdjevic, Hieu Nguyen, Robert Slater

SMU Data Science Review

The problem of forecasting market volatility is a difficult task for most fund managers. Volatility forecasts are used for risk management, alpha (risk) trading, and the reduction of trading friction. Improving the forecasts of future market volatility assists fund managers in adding or reducing risk in their portfolios as well as in increasing hedges to protect their portfolios in anticipation of a market sell-off event. Our analysis compares three existing financial models that forecast future market volatility using the Chicago Board Options Exchange Volatility Index (VIX) to six machine/deep learning supervised regression methods. This analysis determines which models provide ...


Dedicated Hardware For Machine/Deep Learning: Domain Specific Architectures, Angel Izael Solis Jan 2019

Dedicated Hardware For Machine/Deep Learning: Domain Specific Architectures, Angel Izael Solis

Open Access Theses & Dissertations

Artificial intelligence has come a very long way from being a mere spectacle on the silver screen in the 1920s [Hml18]. As artificial intelligence continues to evolve, and we begin to develop more sophisticated Artificial Neural Networks, the need for specialized and more efficient machines (less computational strain while maintaining the same performance results) becomes increasingly evident. Though these “new” techniques, such as Multilayer Perceptron’s, Convolutional Neural Networks and Recurrent Neural Networks, may seem as if they are on the cutting edge of technology, many of these ideas are over 60 years old! However, many of these earlier models ...


Automatic Identification Of Animals In The Wild: A Comparative Study Between C-Capsule Networks And Deep Convolutional Neural Networks., Joel Kamdem Teto, Ying Xie Nov 2018

Automatic Identification Of Animals In The Wild: A Comparative Study Between C-Capsule Networks And Deep Convolutional Neural Networks., Joel Kamdem Teto, Ying Xie

Master of Science in Computer Science Theses

The evolution of machine learning and computer vision in technology has driven a lot of

improvements and innovation into several domains. We see it being applied for credit decisions, insurance quotes, malware detection, fraud detection, email composition, and any other area having enough information to allow the machine to learn patterns. Over the years the number of sensors, cameras, and cognitive pieces of equipment placed in the wilderness has been growing exponentially. However, the resources (human) to leverage these data into something meaningful are not improving at the same rate. For instance, a team of scientist volunteers took 8.4 ...


On The Feasibility Of Profiling, Forecasting And Authenticating Internet Usage Based On Privacy Preserving Netflow Logs, Soheil Sarmadi Nov 2018

On The Feasibility Of Profiling, Forecasting And Authenticating Internet Usage Based On Privacy Preserving Netflow Logs, Soheil Sarmadi

Graduate Theses and Dissertations

Understanding Internet user behavior and Internet usage patterns is fundamental in developing future access networks and services that meet technical as well as Internet user needs. User behavior is routinely studied and measured, but with different methods depending on the research discipline of the investigator, and these disciplines rarely cross. We tackle this challenge by developing frameworks that the Internet usage statistics used as the main features in understanding Internet user behaviors, with the purpose of finding a complete picture of the user behavior and working towards a unified analysis methodology. In this dissertation we collected Internet usage statistics via ...


A Comprehensive Framework To Replicate Process-Level Concurrency Faults, Supat Rattanasuksun Nov 2018

A Comprehensive Framework To Replicate Process-Level Concurrency Faults, Supat Rattanasuksun

Computer Science and Engineering: Theses, Dissertations, and Student Research

Concurrency faults are one of the most damaging types of faults that can affect the dependability of today’s computer systems. Currently, concurrency faults such as process-level races, order violations, and atomicity violations represent the largest class of faults that has been reported to various Linux bug repositories. Clearly, existing approaches for testing such faults during software development processes are not adequate as these faults escape in-house testing efforts and are discovered during deployment and must be debugged.

The main reason concurrency faults are hard to test is because the conditions that allow these to occur can be difficult to ...


Deep Neural Network Architectures For Modulation Classification Using Principal Component Analysis, Sharan Ramjee, Shengtai Ju, Diyu Yang, Aly El Gamal Aug 2018

Deep Neural Network Architectures For Modulation Classification Using Principal Component Analysis, Sharan Ramjee, Shengtai Ju, Diyu Yang, Aly El Gamal

The Summer Undergraduate Research Fellowship (SURF) Symposium

In this work, we investigate the application of Principal Component Analysis to the task of wireless signal modulation recognition using deep neural network architectures. Sampling signals at the Nyquist rate, which is often very high, requires a large amount of energy and space to collect and store the samples. Moreover, the time taken to train neural networks for the task of modulation classification is large due to the large number of samples. These problems can be drastically reduced using Principal Component Analysis, which is a technique that allows us to reduce the dimensionality or number of features of the samples ...


Use Of Adaptive Mobile Applications To Improve Mindfulness, Wiehan Boshoff Jan 2018

Use Of Adaptive Mobile Applications To Improve Mindfulness, Wiehan Boshoff

Browse all Theses and Dissertations

Mindfulness is the state of retaining awareness of what is happening at the current point in time. It has been used in multiple forms to reduce stress, anxiety, and even depression. Promoting Mindfulness can be done in various ways, but current research shows a trend towards preferential usage of breathing exercises over other methods to reach a mindful state. Studies have showcased that breathing can be used as a tool to promote brain control, specifically in the auditory cortex region. Research pertaining to disorders such as Tinnitus, the phantom awareness of sound, could potentially benefit from using these brain control ...


Machine Learning Techniques Implementation In Power Optimization, Data Processing, And Bio-Medical Applications, Khalid Khairullah Mezied Al-Jabery Jan 2018

Machine Learning Techniques Implementation In Power Optimization, Data Processing, And Bio-Medical Applications, Khalid Khairullah Mezied Al-Jabery

Doctoral Dissertations

"The rapid progress and development in machine-learning algorithms becomes a key factor in determining the future of humanity. These algorithms and techniques were utilized to solve a wide spectrum of problems extended from data mining and knowledge discovery to unsupervised learning and optimization. This dissertation consists of two study areas. The first area investigates the use of reinforcement learning and adaptive critic design algorithms in the field of power grid control. The second area in this dissertation, consisting of three papers, focuses on developing and applying clustering algorithms on biomedical data. The first paper presents a novel modelling approach for ...


Operating System Identification By Ipv6 Communication Using Machine Learning Ensembles, Adrian Ordorica Aug 2017

Operating System Identification By Ipv6 Communication Using Machine Learning Ensembles, Adrian Ordorica

Theses and Dissertations

Operating system (OS) identification tools, sometimes called fingerprinting tools, are essential for the reconnaissance phase of penetration testing. While OS identification is traditionally performed by passive or active tools that use fingerprint databases, very little work has focused on using machine learning techniques. Moreover, significantly more work has focused on IPv4 than IPv6. We introduce a collaborative neural network ensemble that uses a unique voting system and a random forest ensemble to deliver accurate predictions. This approach uses IPv6 features as well as packet metadata features for OS identification. Our experiment shows that our approach is valid and we achieve ...


Semantic Visualization For Short Texts With Word Embeddings, Van Minh Tuan Le, Hady W. Lauw Aug 2017

Semantic Visualization For Short Texts With Word Embeddings, Van Minh Tuan Le, Hady W. Lauw

Research Collection School Of Information Systems

Semantic visualization integrates topic modeling and visualization, such that every document is associated with a topic distribution as well as visualization coordinates on a low-dimensional Euclidean space. We address the problem of semantic visualization for short texts. Such documents are increasingly common, including tweets, search snippets, news headlines, or status updates. Due to their short lengths, it is difficult to model semantics as the word co-occurrences in such a corpus are very sparse. Our approach is to incorporate auxiliary information, such as word embeddings from a larger corpus, to supplement the lack of co-occurrences. This requires the development of a ...


Adaptive Region-Based Approaches For Cellular Segmentation Of Bright-Field Microscopy Images, Hady Ahmady Phoulady May 2017

Adaptive Region-Based Approaches For Cellular Segmentation Of Bright-Field Microscopy Images, Hady Ahmady Phoulady

Graduate Theses and Dissertations

Microscopy image processing is an emerging and quickly growing field in medical imaging research area. Recent advancements in technology including higher computation power, larger and cheaper storage modules, and more efficient and faster data acquisition devices such as whole-slide imaging scanners contributed to the recent microscopy image processing research advancement. Most of the methods in this research area either focus on automatically process images and make it easier for pathologists to direct their focus on the important regions in the image, or they aim to automate the whole job of experts including processing and classifying images or tissues that leads ...


Multi-Class Classification Of Textual Data: Detection And Mitigation Of Cheating In Massively Multiplayer Online Role Playing Games, Naga Sai Nikhil Maguluri Jan 2017

Multi-Class Classification Of Textual Data: Detection And Mitigation Of Cheating In Massively Multiplayer Online Role Playing Games, Naga Sai Nikhil Maguluri

Browse all Theses and Dissertations

The success of any multiplayer game depends on the player’s experience. Cheating/Hacking undermines the player’s experience and thus the success of that game. Cheaters, who use hacks, bots or trainers are ruining the gaming experience of a player and are making him leave the game. As the video game industry is a constantly increasing multibillion dollar economy, it is crucial to assure and maintain a state of security. Players reflect their gaming experience in one of the following places: multiplayer chat, game reviews, and social media. This thesis is an exploratory study where our goal is to ...


Deep Learning Approach For Intrusion Detection System (Ids) In The Internet Of Things (Iot) Network Using Gated Recurrent Neural Networks (Gru), Manoj Kumar Putchala Jan 2017

Deep Learning Approach For Intrusion Detection System (Ids) In The Internet Of Things (Iot) Network Using Gated Recurrent Neural Networks (Gru), Manoj Kumar Putchala

Browse all Theses and Dissertations

The Internet of Things (IoT) is a complex paradigm where billions of devices are connected to a network. These connected devices form an intelligent system of systems that share the data without human-to-computer or human-to-human interaction. These systems extract meaningful data that can transform human lives, businesses, and the world in significant ways. However, the reality of IoT is prone to countless cyber-attacks in the extremely hostile environment like the internet. The recent hack of 2014 Jeep Cherokee, iStan pacemaker, and a German steel plant are a few notable security breaches. To secure an IoT system, the traditional high-end security ...


Explorations Into Machine Learning Techniques For Precipitation Nowcasting, Aditya Nagarajan Jan 2017

Explorations Into Machine Learning Techniques For Precipitation Nowcasting, Aditya Nagarajan

Masters Theses

Recent advances in cloud-based big-data technologies now makes data driven solutions feasible for increasing numbers of scientific computing applications. One such data driven solution approach is machine learning where patterns in large data sets are brought to the surface by finding complex mathematical relationships within the data. Nowcasting or short-term prediction of rainfall in a given region is an important problem in meteorology. In this thesis we explore the nowcasting problem through a data driven approach by formulating it as a machine learning problem.

State-of-the-art nowcasting systems today are based on numerical models which describe the physical processes leading to ...


Adaft: A Resource-Efficient Framework For Adaptive Fault-Tolerance In Cyber-Physical Systems, Ye Xu Jan 2017

Adaft: A Resource-Efficient Framework For Adaptive Fault-Tolerance In Cyber-Physical Systems, Ye Xu

Doctoral Dissertations

Cyber-physical systems frequently have to use massive redundancy to meet application requirements for high reliability. While such redundancy is required, it can be activated adaptively, based on the current state of the controlled plant. Most of the time the physical plant is in a state that allows for a lower level of fault-tolerance. Avoiding the continuous deployment of massive fault-tolerance will greatly reduce the workload of CPSs. In this dissertation, we demonstrate a software simulation framework (AdaFT) that can automatically generate the sub-spaces within which our adaptive fault-tolerance can be applied. We also show the theoretical benefits of AdaFT, and ...


Optimized Multilayer Perceptron With Dynamic Learning Rate To Classify Breast Microwave Tomography Image, Chulwoo Pack Jan 2017

Optimized Multilayer Perceptron With Dynamic Learning Rate To Classify Breast Microwave Tomography Image, Chulwoo Pack

Electronic Theses and Dissertations

Most recently developed Computer Aided Diagnosis (CAD) systems and their related research is based on medical images that are usually obtained through conventional imaging techniques such as Magnetic Resonance Imaging (MRI), x-ray mammography, and ultrasound. With the development of a new imaging technology called Microwave Tomography Imaging (MTI), it has become inevitable to develop a CAD system that can show promising performance using new format of data. The platform can have a flexibility on its input by adopting Artificial Neural Network (ANN) as a classifier. Among the various phases of CAD system, we have focused on optimizing the classification phase ...


Investigating The Impact Of Unsupervised Feature-Extraction From Multi-Wavelength Image Data For Photometric Classification Of Stars, Galaxies And Qsos, Annika Lindh Dec 2016

Investigating The Impact Of Unsupervised Feature-Extraction From Multi-Wavelength Image Data For Photometric Classification Of Stars, Galaxies And Qsos, Annika Lindh

Conference papers

Accurate classification of astronomical objects currently relies on spectroscopic data. Acquiring this data is time-consuming and expensive compared to photometric data. Hence, improving the accuracy of photometric classification could lead to far better coverage and faster classification pipelines. This paper investigates the benefit of using unsupervised feature-extraction from multi-wavelength image data for photometric classification of stars, galaxies and QSOs. An unsupervised Deep Belief Network is used, giving the model a higher level of interpretability thanks to its generative nature and layer-wise training. A Random Forest classifier is used to measure the contribution of the novel features compared to a set ...


Significant Permission Identification For Android Malware Detection, Lichao Sun Jul 2016

Significant Permission Identification For Android Malware Detection, Lichao Sun

Computer Science and Engineering: Theses, Dissertations, and Student Research

A recent report indicates that a newly developed malicious app for Android is introduced every 11 seconds. To combat this alarming rate of malware creation, we need a scalable malware detection approach that is effective and efficient. In this thesis, we introduce SigPID, a malware detection system based on permission analysis to cope with the rapid increase in the number of Android malware. Instead of analyzing all 135 Android permissions, our approach applies 3-level pruning by mining the permission data to identify only significant permissions that can be effective in distinguishing benign and malicious apps. Based on the identified significant ...


Intrinsic Functions For Securing Cmos Computation: Variability, Modeling And Noise Sensitivity, Xiaolin Xu Jan 2016

Intrinsic Functions For Securing Cmos Computation: Variability, Modeling And Noise Sensitivity, Xiaolin Xu

Doctoral Dissertations

A basic premise behind modern secure computation is the demand for lightweight cryptographic primitives, like identifier or key generator. From a circuit perspective, the development of cryptographic modules has also been driven by the aggressive scalability of complementary metal-oxide-semiconductor (CMOS) technology. While advancing into nano-meter regime, one significant characteristic of today's CMOS design is the random nature of process variability, which limits the nominal circuit design. With the continuous scaling of CMOS technology, instead of mitigating the physical variability, leveraging such properties becomes a promising way. One of the famous products adhering to this double-edged sword philosophy is the ...


Neuron Clustering For Mitigating Catastrophic Forgetting In Supervised And Reinforcement Learning, Benjamin Frederick Goodrich Dec 2015

Neuron Clustering For Mitigating Catastrophic Forgetting In Supervised And Reinforcement Learning, Benjamin Frederick Goodrich

Doctoral Dissertations

Neural networks have had many great successes in recent years, particularly with the advent of deep learning and many novel training techniques. One issue that has affected neural networks and prevented them from performing well in more realistic online environments is that of catastrophic forgetting. Catastrophic forgetting affects supervised learning systems when input samples are temporally correlated or are non-stationary. However, most real-world problems are non-stationary in nature, resulting in prolonged periods of time separating inputs drawn from different regions of the input space.

Reinforcement learning represents a worst-case scenario when it comes to precipitating catastrophic forgetting in neural networks ...


Contrast Pattern Aided Regression And Classification, Vahid Taslimitehrani Jan 2015

Contrast Pattern Aided Regression And Classification, Vahid Taslimitehrani

Browse all Theses and Dissertations

Regression and classification techniques play an essential role in many data mining tasks and have broad applications. However, most of the state-of-the-art regression and classification techniques are often unable to adequately model the interactions among predictor variables in highly heterogeneous datasets. New techniques that can effectively model such complex and heterogeneous structures are needed to significantly improve prediction accuracy. In this dissertation, we propose a novel type of accurate and interpretable regression and classification models, named as Pattern Aided Regression (PXR) and Pattern Aided Classification (PXC) respectively. Both PXR and PXC rely on identifying regions in the data space where ...


Optimizing Parallel Belief Propagation In Junction Trees Using Regression, Lu Zheng, Ole J. Mengshoel Jul 2013

Optimizing Parallel Belief Propagation In Junction Trees Using Regression, Lu Zheng, Ole J. Mengshoel

Ole J Mengshoel

The junction tree approach, with applications in artificial intelligence, computer vision, machine learning, and statistics, is often used for computing posterior distributions in probabilistic graphical models. One of the key challenges associated with junction trees is computational, and several parallel computing technologies - including many-core processors - have been investigated to meet this challenge. Many-core processors (including GPUs) are now programmable, unfortunately their complexities make it hard to manually tune their parameters in order to optimize software performance. In this paper, we investigate a machine learning approach to minimize the execution time of parallel junction tree algorithms implemented on a GPU. By ...


Mobile Computing: Challenges And Opportunities For Autonomy And Feedback, Ole J. Mengshoel, Bob Iannucci, Abe Ishihara May 2013

Mobile Computing: Challenges And Opportunities For Autonomy And Feedback, Ole J. Mengshoel, Bob Iannucci, Abe Ishihara

Ole J Mengshoel

Mobile devices have evolved to become computing platforms more similar to desktops and workstations than the cell phones and handsets of yesteryear. Unfortunately, today’s mobile infrastructures are mirrors of the wired past. Devices, apps, and networks impact one another, but a systematic approach for allowing them to cooperate is currently missing. We propose an approach that seeks to open key interfaces and to apply feedback and autonomic computing to improve both user experience and mobile system dynamics.


Learning With An Insufficient Supply Of Data Via Knowledge Transfer And Sharing, Samir Al-Stouhi Jan 2013

Learning With An Insufficient Supply Of Data Via Knowledge Transfer And Sharing, Samir Al-Stouhi

Wayne State University Dissertations

As machine learning methods extend to more complex and diverse set of problems, situations arise where the complexity and availability of data presents a situation where the information source is not "adequate" to generate a representative hypothesis. Learning from multiple sources of data is a promising research direction as researchers leverage ever more diverse sources of information. Since data is not readily available, knowledge has to be transferred from other sources and new methods (both supervised and un-supervised) have to be developed to selectively share and transfer knowledge. In this dissertation, we present both supervised and un-supervised techniques to tackle ...


Intelligence Tests For Robots: Solving Perceptual Reasoning Tasks With A Humanoid Robot, Connor Schenck Jan 2013

Intelligence Tests For Robots: Solving Perceptual Reasoning Tasks With A Humanoid Robot, Connor Schenck

Graduate Theses and Dissertations

Intelligence test scores have long been shown to correlate with a wide variety of other abilities. The goal of this thesis is to enable a robot to solve some of the common tasks from intelligence tests with the intent of improving its performance on other real-world tasks. In other words, the goal of this thesis is to make robots more intelligent. We used an upper-torso humanoid robot to solve three common perceptual reasoning tasks: the object pairing task, the order completion task, and the matrix completion task. Each task consisted of a set of objects arranged in a specific configuration ...


Pattern Recognition Via Machine Learning With Genetic Decision-Programming, Carl C. Hoff Jan 2005

Pattern Recognition Via Machine Learning With Genetic Decision-Programming, Carl C. Hoff

Browse all Theses and Dissertations

In the intersection of pattern recognition, machine learning, and evolutionary computation is a new search technique by which computers might program themselves. That technique is called genetic decision-programming. A computer can gain the ability to distinguish among the things that it needs to recognize by using genetic decision-programming for pattern discovery and concept learning. Those patterns and concepts can be easily encoded in the spines of a decision program (tree or diagram). A spine consists of two parts: (1) the test-outcome pairs along a path from the program's root to any of its leaves and (2) the conclusion in ...