Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

Wright State University

Machine Learning

Publication Year

Articles 1 - 5 of 5

Full-Text Articles in Computer Engineering

Use Of Adaptive Mobile Applications To Improve Mindfulness, Wiehan Boshoff Jan 2018

Use Of Adaptive Mobile Applications To Improve Mindfulness, Wiehan Boshoff

Browse all Theses and Dissertations

Mindfulness is the state of retaining awareness of what is happening at the current point in time. It has been used in multiple forms to reduce stress, anxiety, and even depression. Promoting Mindfulness can be done in various ways, but current research shows a trend towards preferential usage of breathing exercises over other methods to reach a mindful state. Studies have showcased that breathing can be used as a tool to promote brain control, specifically in the auditory cortex region. Research pertaining to disorders such as Tinnitus, the phantom awareness of sound, could potentially benefit from using these brain control ...


Multi-Class Classification Of Textual Data: Detection And Mitigation Of Cheating In Massively Multiplayer Online Role Playing Games, Naga Sai Nikhil Maguluri Jan 2017

Multi-Class Classification Of Textual Data: Detection And Mitigation Of Cheating In Massively Multiplayer Online Role Playing Games, Naga Sai Nikhil Maguluri

Browse all Theses and Dissertations

The success of any multiplayer game depends on the player’s experience. Cheating/Hacking undermines the player’s experience and thus the success of that game. Cheaters, who use hacks, bots or trainers are ruining the gaming experience of a player and are making him leave the game. As the video game industry is a constantly increasing multibillion dollar economy, it is crucial to assure and maintain a state of security. Players reflect their gaming experience in one of the following places: multiplayer chat, game reviews, and social media. This thesis is an exploratory study where our goal is to ...


Deep Learning Approach For Intrusion Detection System (Ids) In The Internet Of Things (Iot) Network Using Gated Recurrent Neural Networks (Gru), Manoj Kumar Putchala Jan 2017

Deep Learning Approach For Intrusion Detection System (Ids) In The Internet Of Things (Iot) Network Using Gated Recurrent Neural Networks (Gru), Manoj Kumar Putchala

Browse all Theses and Dissertations

The Internet of Things (IoT) is a complex paradigm where billions of devices are connected to a network. These connected devices form an intelligent system of systems that share the data without human-to-computer or human-to-human interaction. These systems extract meaningful data that can transform human lives, businesses, and the world in significant ways. However, the reality of IoT is prone to countless cyber-attacks in the extremely hostile environment like the internet. The recent hack of 2014 Jeep Cherokee, iStan pacemaker, and a German steel plant are a few notable security breaches. To secure an IoT system, the traditional high-end security ...


Contrast Pattern Aided Regression And Classification, Vahid Taslimitehrani Jan 2015

Contrast Pattern Aided Regression And Classification, Vahid Taslimitehrani

Browse all Theses and Dissertations

Regression and classification techniques play an essential role in many data mining tasks and have broad applications. However, most of the state-of-the-art regression and classification techniques are often unable to adequately model the interactions among predictor variables in highly heterogeneous datasets. New techniques that can effectively model such complex and heterogeneous structures are needed to significantly improve prediction accuracy. In this dissertation, we propose a novel type of accurate and interpretable regression and classification models, named as Pattern Aided Regression (PXR) and Pattern Aided Classification (PXC) respectively. Both PXR and PXC rely on identifying regions in the data space where ...


Pattern Recognition Via Machine Learning With Genetic Decision-Programming, Carl C. Hoff Jan 2005

Pattern Recognition Via Machine Learning With Genetic Decision-Programming, Carl C. Hoff

Browse all Theses and Dissertations

In the intersection of pattern recognition, machine learning, and evolutionary computation is a new search technique by which computers might program themselves. That technique is called genetic decision-programming. A computer can gain the ability to distinguish among the things that it needs to recognize by using genetic decision-programming for pattern discovery and concept learning. Those patterns and concepts can be easily encoded in the spines of a decision program (tree or diagram). A spine consists of two parts: (1) the test-outcome pairs along a path from the program's root to any of its leaves and (2) the conclusion in ...