Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Computer Sciences

Western University

Deep Learning

Articles 1 - 3 of 3

Full-Text Articles in Computer Engineering

Similarity-Based Chained Transfer Learning For Energy Forecasting With Big Data, Yifang Tian, Ljubisa Sehovac, Katarina Grolinger Sep 2019

Similarity-Based Chained Transfer Learning For Energy Forecasting With Big Data, Yifang Tian, Ljubisa Sehovac, Katarina Grolinger

Electrical and Computer Engineering Publications

Smart meter popularity has resulted in the ability to collect big energy data and has created opportunities for large-scale energy forecasting. Machine Learning (ML) techniques commonly used for forecasting, such as neural networks, involve computationally intensive training typically with data from a single building or a single aggregated load to predict future consumption for that same building or aggregated load. With hundreds of thousands of meters, it becomes impractical or even infeasible to individually train a model for each meter. Consequently, this paper proposes Similarity-Based Chained Transfer Learning (SBCTL), an approach for building neural network-based models for many meters by ...


Forecasting Building Energy Consumption With Deep Learning: A Sequence To Sequence Approach, Ljubisa Sehovac, Cornelius Nesen, Katarina Grolinger Jun 2019

Forecasting Building Energy Consumption With Deep Learning: A Sequence To Sequence Approach, Ljubisa Sehovac, Cornelius Nesen, Katarina Grolinger

Electrical and Computer Engineering Publications

Energy Consumption has been continuously increasing due to the rapid expansion of high-density cities, and growth in the industrial and commercial sectors. To reduce the negative impact on the environment and improve sustainability, it is crucial to efficiently manage energy consumption. Internet of Things (IoT) devices, including widely used smart meters, have created possibilities for energy monitoring as well as for sensor based energy forecasting. Machine learning algorithms commonly used for energy forecasting such as feedforward neural networks are not well-suited for interpreting the time dimensionality of a signal. Consequently, this paper uses Recurrent Neural Networks (RNN) to capture time ...


Deep Learning: Edge-Cloud Data Analytics For Iot, Katarina Grolinger, Ananda M. Ghosh Jan 2019

Deep Learning: Edge-Cloud Data Analytics For Iot, Katarina Grolinger, Ananda M. Ghosh

Electrical and Computer Engineering Publications

Sensors, wearables, mobile and other Internet of Thing (IoT) devices are becoming increasingly integrated in all aspects of our lives. They are capable of collecting massive quantities of data that are typically transmitted to the cloud for processing. However, this results in increased network traffic and latencies. Edge computing has a potential to remedy these challenges by moving computation physically closer to the network edge where data are generated. However, edge computing does not have sufficient resources for complex data analytics tasks. Consequently, this paper investigates merging cloud and edge computing for IoT data analytics and presents a deep learning-based ...