Open Access. Powered by Scholars. Published by Universities.®

Computer Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 30 of 115

Full-Text Articles in Computer Engineering

Maximizing Multifaceted Network Influence, Yuchen Li, Ju Fan, George V. Ovchinnikov, Panagiotis Karras Nov 2019

Maximizing Multifaceted Network Influence, Yuchen Li, Ju Fan, George V. Ovchinnikov, Panagiotis Karras

Research Collection School Of Information Systems

An information dissemination campaign is often multifaceted, involving several facets or pieces of information disseminating from different sources. The question then arises, how should we assign such pieces to eligible sources so as to achieve the best viral dissemination results? Past research has studied the problem of Influence Maximization (IM), which is to select a set of k promoters that maximizes the expected reach of a message over a network. However, in this classical IM problem, each promoter spreads out the same unitary piece of information. In this paper, we propose the Optimal Influential Pieces Assignment (OIPA) problem, which is ...


Worker Demographics And Earnings On Amazon Mechanical Turk: An Exploratory Analysis, Kotaro Hara, Kristy Milland, Benjamin V. Hanrahan, Chris Callison-Burch, Abigail Adams, Saiph Savage, Jeffrey P. Bigham Sep 2019

Worker Demographics And Earnings On Amazon Mechanical Turk: An Exploratory Analysis, Kotaro Hara, Kristy Milland, Benjamin V. Hanrahan, Chris Callison-Burch, Abigail Adams, Saiph Savage, Jeffrey P. Bigham

Research Collection School Of Information Systems

Prior research reported that workers on Amazon Mechanical Turk (AMT) are underpaid, earning about $2/h. But the prior research did not investigate the difference in wage due to worker characteristics (e.g., country of residence). We present the first data-driven analysis on wage gap on AMT. Using work log data and demographic data collected via online survey, we analyse the gap in wage due to different factors. We show that there is indeed wage gap; for example, workers in the U.S. earn $3.01/h while those in India earn $1.41/h on average.


Correlation-Sensitive Next-Basket Recommendation, Duc Trong Le, Hady Wirawan Lauw, Yuan Fang Aug 2019

Correlation-Sensitive Next-Basket Recommendation, Duc Trong Le, Hady Wirawan Lauw, Yuan Fang

Research Collection School Of Information Systems

Items adopted by a user over time are indicative ofthe underlying preferences. We are concerned withlearning such preferences from observed sequencesof adoptions for recommendation. As multipleitems are commonly adopted concurrently, e.g., abasket of grocery items or a sitting of media consumption, we deal with a sequence of baskets asinput, and seek to recommend the next basket. Intuitively, a basket tends to contain groups of relateditems that support particular needs. Instead of recommending items independently for the next basket, we hypothesize that incorporating informationon pairwise correlations among items would help toarrive at more coherent basket recommendations.Towards this objective, we ...


Making Wearable Sensing Less Obtrusive, Huy Vu Tran, Archan Misra Mar 2019

Making Wearable Sensing Less Obtrusive, Huy Vu Tran, Archan Misra

Research Collection School Of Information Systems

Sensing is a crucial part of any cyber-physical system. Wearable device has its huge potential for sensing applications because it is worn on the user body. However, wearable sensing can cause obtrusiveness to the user. Obtrusiveness can be seen as a perception of a lack of usefulness [1] such as a lag in user interaction channel. In addition, being worn by a user, it is not connected to a power supply, and thus needs to be removed to be charged regularly. This can cause a nuisance to elderly or disabled people. However, there are also opportunities for wearable devices to ...


Lightweight Privacy-Preserving Ensemble Classification For Face Recognition, Zhuo Ma, Yang Liu, Ximeng Liu, Jianfeng Ma, Kui Ren Jan 2019

Lightweight Privacy-Preserving Ensemble Classification For Face Recognition, Zhuo Ma, Yang Liu, Ximeng Liu, Jianfeng Ma, Kui Ren

Research Collection School Of Information Systems

The development of machine learning technology and visual sensors is promoting the wider applications of face recognition into our daily life. However, if the face features in the servers are abused by the adversary, our privacy and wealth can be faced with great threat. Many security experts have pointed out that, by 3-D-printing technology, the adversary can utilize the leaked face feature data to masquerade others and break the E-bank accounts. Therefore, in this paper, we propose a lightweight privacy-preserving adaptive boosting (AdaBoost) classification framework for face recognition (POR) based on the additive secret sharing and edge computing. First, we ...


Person Re-Identification Over Encrypted Outsourced Surveillance Videos, Hang Cheng, Huaxiong Wang, Ximeng Liu, Yan Fang, Meiqing Wang, Xiaojun Zhang Jan 2019

Person Re-Identification Over Encrypted Outsourced Surveillance Videos, Hang Cheng, Huaxiong Wang, Ximeng Liu, Yan Fang, Meiqing Wang, Xiaojun Zhang

Research Collection School Of Information Systems

Person re-identification (Re-ID) has attracted extensive attention due to its potential to identify a person of interest from different surveillance videos. With the increasing amount of the surveillance videos, high computation and storage costs have posed a great challenge for the resource-constrained users. In recent years, the cloud storage services have made a large volume of video data outsourcing become possible. However, person Re-ID over outsourced surveillance videos could lead to a security threat, i.e., the privacy leakage of the innocent person in these videos. Therefore, we propose an efFicient privAcy-preseRving peRson Re-ID Scheme (FARRIS) over outsourced surveillance videos ...


Verifiable Computation Using Re-Randomizable Garbled Circuits, Qingsong Zhao, Qingkai Zeng, Ximeng Liu, Huanliang Xu Jan 2019

Verifiable Computation Using Re-Randomizable Garbled Circuits, Qingsong Zhao, Qingkai Zeng, Ximeng Liu, Huanliang Xu

Research Collection School Of Information Systems

Yao's garbled circuit allows a client to outsource a function computation to a server with verifiablity. Unfortunately, the garbled circuit suffers from a one-time usage. The combination of fully homomorphic encryption (FHE) and garbled circuits enables the client and the server to reuse the garbled circuit with multiple inputs (Gennaro et al.). However, there still seems to be a long way to go for improving the efficiency of all known FHE schemes and it need much stronger security assumption. On the other hand, the construction is only proven to be secure in a weaker model where an adversary can ...


Feature-Based Transfer Learning In Natural Language Processing, Jianfei Yu Dec 2018

Feature-Based Transfer Learning In Natural Language Processing, Jianfei Yu

Dissertations and Theses Collection (Open Access)

In the past few decades, supervised machine learning approach is one of the most important methodologies in the Natural Language Processing (NLP) community. Although various kinds of supervised learning methods have been proposed to obtain the state-of-the-art performance across most NLP tasks, the bottleneck of them lies in the heavy reliance on the large amount of manually annotated data, which is not always available in our desired target domain/task. To alleviate the data sparsity issue in the target domain/task, an attractive solution is to find sufficient labeled data from a related source domain/task. However, for most NLP ...


Empathetic Computing For Inclusive Application Design, Kenny Choo Tsu Wei Dec 2018

Empathetic Computing For Inclusive Application Design, Kenny Choo Tsu Wei

Dissertations and Theses Collection (Open Access)

The explosive growth of the ecosystem of personal and ambient computing de- vices coupled with the proliferation of high-speed connectivity has enabled ex- tremely powerful and varied mobile computing applications that are used every- where. While such applications have tremendous potential to improve the lives of impaired users, most mobile applications have impoverished designs to be inclusive– lacking support for users with specific disabilities. Mobile app designers today haveinadequate support to design existing classes of apps to support users with specific disabilities, and more so, lack the support to design apps that specifically target these users. One way to resolve ...


Mobility-Driven Ble Transmit-Power Adaptation For Participatory Data Muling, Chung-Kyun Han, Archan Misra, Shih-Fen Cheng Dec 2018

Mobility-Driven Ble Transmit-Power Adaptation For Participatory Data Muling, Chung-Kyun Han, Archan Misra, Shih-Fen Cheng

Research Collection School Of Information Systems

This paper analyzes a human-centric framework, called SmartABLE, for easy retrieval of the sensor values from pervasively deployed smart objects in a campus-like environment. In this framework, smartphones carried by campus occupants act as data mules, opportunistically retrieving data from nearby BLE (Bluetooth Low Energy) equipped smart object sensors and relaying them to a backend repository. We focus specifically on dynamically varying the transmission power of the deployed BLE beacons, so as to extend their operational lifetime without sacrificing the frequency of sensor data retrieval. We propose a memetic algorithm-based power adaptation strategy that can handle deployments of thousands of ...


Mobility-Driven Ble Transmit-Power Adaptation For Participatory Data Muling, Chung-Kyun Han, Archan Misra, Shih-Fen Cheng Dec 2018

Mobility-Driven Ble Transmit-Power Adaptation For Participatory Data Muling, Chung-Kyun Han, Archan Misra, Shih-Fen Cheng

Research Collection School Of Information Systems

This paper analyzes a human-centric framework, called SmartABLE, for easy retrieval of the sensor values from pervasively deployed smart objects in a campus-like environment. In this framework, smartphones carried by campus occupants act as data mules, opportunistically retrieving data from nearby BLE (Bluetooth Low Energy) equipped smart object sensors and relaying them to a backend repository. We focus specifically on dynamically varying the transmission power of the deployed BLE beacons, so as to extend their operational lifetime without sacrificing the frequency of sensor data retrieval. We propose a memetic algorithm-based power adaptation strategy that can handle deployments of thousands of ...


Early Prediction Of Merged Code Changes To Prioritize Reviewing Tasks, Yuanrui Fan, Xin Xia, David Lo, Shanping Li Dec 2018

Early Prediction Of Merged Code Changes To Prioritize Reviewing Tasks, Yuanrui Fan, Xin Xia, David Lo, Shanping Li

Research Collection School Of Information Systems

Modern Code Review (MCR) has been widely used by open source and proprietary software projects. Inspecting code changes consumes reviewers much time and effort since they need to comprehend patches, and many reviewers are often assigned to review many code changes. Note that a code change might be eventually abandoned, which causes waste of time and effort. Thus, a tool that predicts early on whether a code change will be merged can help developers prioritize changes to inspect, accomplish more things given tight schedule, and not waste reviewing effort on low quality changes. In this paper, motivated by the above ...


Is There Space For Violence?: A Data-Driven Approach To The Exploration Of Spatial-Temporal Dimensions Of Conflict, Tin Seong Kam, Vincent Zhi Nov 2018

Is There Space For Violence?: A Data-Driven Approach To The Exploration Of Spatial-Temporal Dimensions Of Conflict, Tin Seong Kam, Vincent Zhi

Research Collection School Of Information Systems

With recent increases in incidences of political violence globally, the world has now become more uncertain and less predictable. Of particular concern is the case of violence against civilians, who are often caught in the crossfire between armed state or non-state actors. Classical methods of studying political violence and international relations need to be updated. Adopting the use of data analytic tools and techniques of studying big data would enable academics and policy makers to make sense of a rapidly changing world.


Experiences & Challenges With Server-Side Wifi Indoor Localization Using Existing Infrastructure, Dheryta Jaisinghani, Rajesh Krishna Balan, Vinayak Naik, Archan Misra, Youngki Lee Nov 2018

Experiences & Challenges With Server-Side Wifi Indoor Localization Using Existing Infrastructure, Dheryta Jaisinghani, Rajesh Krishna Balan, Vinayak Naik, Archan Misra, Youngki Lee

Research Collection School Of Information Systems

Real-world deployments of WiFi-based indoor localization in large public venues are few and far between as most state-of-the-art solutions require either client or infrastructure-side changes. Hence, even though high location accuracy is possible with these solutions, they are not practical due to cost and/or client adoption reasons. Majority of the public venues use commercial controller-managed WLAN solutions, that neither allow client changes nor infrastructure changes. In fact, for such venues we have observed highly heterogeneous devices with very low adoption rates for client-side apps. In this paper, we present our experiences in deploying a scalable location system for such ...


Exploring Experiential Learning Model And Risk Management Process For An Undergraduate Software Architecture Course, Eng Lieh Ouh, Yunghans Irawan Oct 2018

Exploring Experiential Learning Model And Risk Management Process For An Undergraduate Software Architecture Course, Eng Lieh Ouh, Yunghans Irawan

Research Collection School Of Information Systems

This paper shares our insights on exploring theexperiential learning model and risk management process todesign an undergraduate software architecture course. The keychallenge for undergraduate students to appreciate softwarearchitecture design is usually their limited experience in thesoftware industry. In software architecture, the high-level designprinciples are heuristics lacking the absoluteness of firstprinciples which for inexperienced undergraduate students, thisis a frustrating divergence from what they used to value. From aneducator's perspective, teaching software architecture requirescontending with the problem of how to express this level ofabstraction practically and also make the learning realistic. Inthis paper, we propose a model adapting the concepts ofexperiential ...


Teaching Adult Learners On Software Architecture Design Skills, Eng Lieh Ouh, Yunghans Irawan Oct 2018

Teaching Adult Learners On Software Architecture Design Skills, Eng Lieh Ouh, Yunghans Irawan

Research Collection School Of Information Systems

Software architectures present high-level views ofsystems, enabling developers to abstract away the unnecessarydetails and focus on the overall big picture. Designing a softwarearchitecture is an essential skill in software engineering and adultlearners are seeking this skill to further progress in their career.With the technology revolution and advancements in this rapidlychanging world, the proportion of adult learners attendingcourses for continuing education are increasing. Their learningobjectives are no longer to obtain good grades but the practicalskills to enable them to perform better in their work and advancein their career. Teaching software architecture to upskill theseadult learners requires contending with the problem ...


Simknn: A Scalable Method For In-Memory Knn Search Over Moving Objects In Road Networks, Bin Cao, Chenyu Hou, Suifei Li, Jing Fan, Jianwei Yin, Baihua Zheng, Jie Bao Oct 2018

Simknn: A Scalable Method For In-Memory Knn Search Over Moving Objects In Road Networks, Bin Cao, Chenyu Hou, Suifei Li, Jing Fan, Jianwei Yin, Baihua Zheng, Jie Bao

Research Collection School Of Information Systems

Nowadays, many location-based applications require the ability of querying k-nearest neighbors over a very large scale of5 moving objects in road networks, e.g., taxi-calling and ride-sharing services. Traditional grid index with equal-sized cells can not adapt6 to the skewed distribution of moving objects in real scenarios. Thus, to obtain the fast querying response time, the grid needs to be split7 into more smaller cells which introduces the side-effect of higher memory cost, i.e., maintaining such a large volume of cells requires a8 much larger memory space at the server side. In this paper, we present SIMkNN, a scalable ...


Augmenting And Structuring User Queries To Support Efficient Free-Form Code Search, Raphael Sirres, Tegawendé F. Bissyande, Dongsun Kim, David Lo, Jacques Klein, Kisub Kim, Yves Le Traon Oct 2018

Augmenting And Structuring User Queries To Support Efficient Free-Form Code Search, Raphael Sirres, Tegawendé F. Bissyande, Dongsun Kim, David Lo, Jacques Klein, Kisub Kim, Yves Le Traon

Research Collection School Of Information Systems

Source code terms such as method names and variable types are often different from conceptual words mentioned in a search query. This vocabulary mismatch problem can make code search inefficient. In this paper, we present COde voCABUlary (CoCaBu), an approach to resolving the vocabulary mismatch problem when dealing with free-form code search queries. Our approach leverages common developer questions and the associated expert answers to augment user queries with the relevant, but missing, structural code entities in order to improve the performance of matching relevant code examples within large code repositories. To instantiate this approach, we build GitSearch, a code ...


Blockchain Based Efficient And Robust Fair Payment For Outsourcing Services In Cloud Computing, Yinghui Zhang, Robert H. Deng, Ximeng Liu, Dong Zheng Sep 2018

Blockchain Based Efficient And Robust Fair Payment For Outsourcing Services In Cloud Computing, Yinghui Zhang, Robert H. Deng, Ximeng Liu, Dong Zheng

Research Collection School Of Information Systems

As an attractive business model of cloud computing, outsourcing services usually involve online payment and security issues. The mutual distrust between users and outsourcing service providers may severely impede the wide adoption of cloud computing. Nevertheless, most existing payment solutions only consider a specific type of outsourcing service and rely on a trusted third-party to realize fairness. In this paper, in order to realize secure and fair payment of outsourcing services in general without relying on any third-party, trusted or not, we introduce BCPay, a blockchain based fair payment framework for outsourcing services in cloud computing. We first present the ...


Exact Processing Of Uncertain Top-K Queries In Multi-Criteria Settings, Kyriakos Mouratidis, Bo Tang Aug 2018

Exact Processing Of Uncertain Top-K Queries In Multi-Criteria Settings, Kyriakos Mouratidis, Bo Tang

Research Collection School Of Information Systems

Traditional rank-aware processing assumes a dataset that contains available options to cover a specific need (e.g., restaurants, hotels, etc) and users who browse that dataset via top-k queries with linear scoring functions, i.e., by ranking the options according to the weighted sum of their attributes, for a set of given weights. In practice, however, user preferences (weights) may only be estimated with bounded accuracy, or may be inherently uncertain due to the inability of a human user to specify exact weight values with absolute accuracy. Motivated by this, we introduce the uncertain top-k query (UTK). Given uncertain preferences ...


Privacy-Preserving Mining Of Association Rule On Outsourced Cloud Data From Multiple Parties, Lin Liu, Jinshu Su, Rongmao Chen, Ximeng Liu, Xiaofeng Wang, Shuhui Chen, Ho-Fung Fung Leung Jul 2018

Privacy-Preserving Mining Of Association Rule On Outsourced Cloud Data From Multiple Parties, Lin Liu, Jinshu Su, Rongmao Chen, Ximeng Liu, Xiaofeng Wang, Shuhui Chen, Ho-Fung Fung Leung

Research Collection School Of Information Systems

It has been widely recognized as a challenge to carry out data analysis and meanwhile preserve its privacy in the cloud. In this work, we mainly focus on a well-known data analysis approach namely association rule mining. We found that the data privacy in this mining approach have not been well considered so far. To address this problem, we propose a scheme for privacy-preserving association rule mining on outsourced cloud data which are uploaded from multiple parties in a twin-cloud architecture. In particular, we mainly consider the scenario where the data owners and miners have different encryption keys that are ...


Low-Rank Sparse Subspace For Spectral Clustering, Xiaofeng Zhu, Shichao Zhang, Yonggang Li, Jilian Zhang, Lifeng Yang, Yue Fang Jul 2018

Low-Rank Sparse Subspace For Spectral Clustering, Xiaofeng Zhu, Shichao Zhang, Yonggang Li, Jilian Zhang, Lifeng Yang, Yue Fang

Research Collection School Of Information Systems

The current two-step clustering methods separately learn the similarity matrix and conduct k means clustering. Moreover, the similarity matrix is learnt from the original data, which usually contain noise. As a consequence, these clustering methods cannot achieve good clustering results. To address these issues, this paper proposes a new graph clustering methods (namely Low-rank Sparse Subspace clustering (LSS)) to simultaneously learn the similarity matrix and conduct the clustering from the low-dimensional feature space of the original data. Specifically, the proposed LSS integrates the learning of similarity matrix of the original feature space, the learning of similarity matrix of the low-dimensional ...


Empath-D: Vr-Based Empathetic App Design For Accessibility, Wonjung Kim, Kenny Tsu Wei Choo, Youngki Lee, Archan Misra, Rajesh Krishna Balan Jun 2018

Empath-D: Vr-Based Empathetic App Design For Accessibility, Wonjung Kim, Kenny Tsu Wei Choo, Youngki Lee, Archan Misra, Rajesh Krishna Balan

Research Collection School Of Information Systems

With app-based interaction increasingly permeating all aspects of daily living, it is essential to ensure that apps are designed to be inclusive and are usable by a wider audience such as the elderly, with various impairments (e.g., visual, audio and motor). We propose Empath-D, a system that fosters empathetic design, by allowing app designers, in-situ, to rapidly evaluate the usability of their apps, from the perspective of impaired users. To provide a truly authentic experience, Empath-D carefully orchestrates the interaction between a smartphone and a VR device, allowing the user to experience simulated impairments in a virtual world while ...


Analyzing Requirements And Traceability Information To Improve Bug Localization, Michael Rath, David Lo, Patrick Mader May 2018

Analyzing Requirements And Traceability Information To Improve Bug Localization, Michael Rath, David Lo, Patrick Mader

Research Collection School Of Information Systems

Locating bugs in industry-size software systems is time consuming and challenging. An automated approach for assisting the process of tracing from bug descriptions to relevant source code benefits developers. A large body of previous work aims to address this problem and demonstrates considerable achievements. Most existing approaches focus on the key challenge of improving techniques based on textual similarity to identify relevant files. However, there exists a lexical gap between the natural language used to formulate bug reports and the formal source code and its comments. To bridge this gap, state-of-the-art approaches contain a component for analyzing bug history information ...


Breathing-Based Authentication On Resource-Constrained Iot Devices Using Recurrent Neural Networks, Jagmohan Chauhan, Suranga Seneviratne, Yining Hu, Archan Misra, Aruna Seneviratne, Youngki Lee May 2018

Breathing-Based Authentication On Resource-Constrained Iot Devices Using Recurrent Neural Networks, Jagmohan Chauhan, Suranga Seneviratne, Yining Hu, Archan Misra, Aruna Seneviratne, Youngki Lee

Research Collection School Of Information Systems

Recurrent neural networks (RNNs) have shown promising resultsin audio and speech-processing applications. The increasingpopularity of Internet of Things (IoT) devices makes a strongcase for implementing RNN-based inferences for applicationssuch as acoustics-based authentication and voice commandsfor smart homes. However, the feasibility and performance ofthese inferences on resource-constrained devices remain largelyunexplored. The authors compare traditional machine-learningmodels with deep-learning RNN models for an end-to-endauthentication system based on breathing acoustics.


Continuous Top-K Monitoring On Document Streams (Extended Abstract), Leong Hou U, Junjie Zhang, Kyriakos Mouratidis, Ye Li Apr 2018

Continuous Top-K Monitoring On Document Streams (Extended Abstract), Leong Hou U, Junjie Zhang, Kyriakos Mouratidis, Ye Li

Research Collection School Of Information Systems

The efficient processing of document streams plays an important role in many information filtering systems. Emerging applications, such as news update filtering and social network notifications, demand presenting end-users with the most relevant content to their preferences. In this work, user preferences are indicated by a set of keywords. A central server monitors the document stream and continuously reports to each user the top-k documents that are most relevant to her keywords. The objective is to support large numbers of users and high stream rates, while refreshing the topk results almost instantaneously. Our solution abandons the traditional frequency-ordered indexing approach ...


Virtualization In Wireless Sensor Networks: Fault Tolerant Embedding For Internet Of Things, Omprakash Kaiwartya, Abdul Hanan Abdullah, Yue Cao, Jaime Lloret, Sushil Kumar, Rajiv Ratn Shah, Mukesh Prasad, Shiv Prakash Apr 2018

Virtualization In Wireless Sensor Networks: Fault Tolerant Embedding For Internet Of Things, Omprakash Kaiwartya, Abdul Hanan Abdullah, Yue Cao, Jaime Lloret, Sushil Kumar, Rajiv Ratn Shah, Mukesh Prasad, Shiv Prakash

Research Collection School Of Information Systems

Recently, virtualization in wireless sensor networks (WSNs) has witnessed significant attention due to the growing service domain for IoT. Related literature on virtualization in WSNs explored resource optimization without considering communication failure in WSNs environments. The failure of a communication link in WSNs impacts many virtual networks running IoT services. In this context, this paper proposes a framework for optimizing fault tolerance in virtualization in WSNs, focusing on heterogeneous networks for service-oriented IoT applications. An optimization problem is formulated considering fault tolerance and communication delay as two conflicting objectives. An adapted non-dominated sorting based genetic algorithm (A-NSGA) is developed to ...


Entagrec(++): An Enhanced Tag Recommendation System For Software Information Sites, Shawei Wang, David Lo, Bogdan Vasilescu, Alexander Serebrenik Apr 2018

Entagrec(++): An Enhanced Tag Recommendation System For Software Information Sites, Shawei Wang, David Lo, Bogdan Vasilescu, Alexander Serebrenik

Research Collection School Of Information Systems

Software engineers share experiences with modern technologies using software information sites, such as Stack Overflow. These sites allow developers to label posted content, referred to as software objects, with short descriptions, known as tags. Tags help to improve the organization of questions and simplify the browsing of questions for users. However, tags assigned to objects tend to be noisy and some objects are not well tagged. For instance, 14.7% of the questions that were posted in 2015 on Stack Overflow needed tag re-editing after the initial assignment. To improve the quality of tags in software information sites, we propose ...


Scaling Human Activity Recognition Via Deep Learning-Based Domain Adaptation, Md Abdullah Hafiz Khan, Nirmalya Roy, Archan Misra Mar 2018

Scaling Human Activity Recognition Via Deep Learning-Based Domain Adaptation, Md Abdullah Hafiz Khan, Nirmalya Roy, Archan Misra

Research Collection School Of Information Systems

We investigate the problem of making human activityrecognition (AR) scalable–i.e., allowing AR classifiers trainedin one context to be readily adapted to a different contextualdomain. This is important because AR technologies can achievehigh accuracy if the classifiers are trained for a specific individualor device, but show significant degradation when the sameclassifier is applied context–e.g., to a different device located ata different on-body position. To allow such adaptation withoutrequiring the onerous step of collecting large volumes of labeledtraining data in the target domain, we proposed a transductivetransfer learning model that is specifically tuned to the propertiesof convolutional neural ...


Integrated Reward Scheme And Surge Pricing In A Ride Sourcing Market, Hai Yang, Chaoyi Shao, Hai Wang, Jieping Ye Jan 2018

Integrated Reward Scheme And Surge Pricing In A Ride Sourcing Market, Hai Yang, Chaoyi Shao, Hai Wang, Jieping Ye

Research Collection School Of Information Systems

Surge pricing is commonly used in on-demand ride-sourcing platforms (e.g., Uber, Lyft and Didi) to dynamically balance demand and supply. However, since the price for ride service cannot be unlimited, there is usually a reasonable or legitimate range of prices in practice. Such a constrained surge pricing strategy fails to balance demand and supply in certain cases, e.g., even adopting the maximum allowed price cannot reduce the demand to an affordable level during peak hours. In addition, the practice of surge pricing is controversial and has stimulated long debate regarding its pros and cons. In this paper, to ...