Open Access. Powered by Scholars. Published by Universities.®

Civil and Environmental Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Evapotranspiration

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 31 - 60 of 88

Full-Text Articles in Civil and Environmental Engineering

Evaluation Of Tseb Turbulent Fluxes Using Different Methods For The Retrieval Of Soil And Canopy Component Temperatures From Uav Thermal And Multispectral Imagery, Héctor Nieto, William P. Kustas, Alfonso F. Torres-Rúa, Joseph G. Alfieri, Feng Gao, Martha C. Anderson, W. Alex White, Lisheng Song, María Del Mar Alsina, John H. Prueger, Mac Mckee, Manal Elarab, Lynn G. Mckee Sep 2018

Evaluation Of Tseb Turbulent Fluxes Using Different Methods For The Retrieval Of Soil And Canopy Component Temperatures From Uav Thermal And Multispectral Imagery, Héctor Nieto, William P. Kustas, Alfonso F. Torres-Rúa, Joseph G. Alfieri, Feng Gao, Martha C. Anderson, W. Alex White, Lisheng Song, María Del Mar Alsina, John H. Prueger, Mac Mckee, Manal Elarab, Lynn G. Mckee

AggieAir Publications

The thermal-based Two-Source Energy Balance (TSEB) model partitions the evapotranspiration (ET) and energy fluxes from vegetation and soil components providing the capability for estimating soil evaporation (E) and canopy transpiration (T). However, it is crucial for ET partitioning to retrieve reliable estimates of canopy and soil temperatures and net radiation, as the latter determines the available energy for water and heat exchange from soil and canopy sources. These two factors become especially relevant in row crops with wide spacing and strongly clumped vegetation such as vineyards and orchards. To better understand these effects, very high spatial resolution remote-sensing data from …


Advancing Methods To Quantify Actual Evapotranspiration In Stony Soil Ecosystems, Kshitij Parajuli Aug 2018

Advancing Methods To Quantify Actual Evapotranspiration In Stony Soil Ecosystems, Kshitij Parajuli

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Water is undeniably among the most important natural resources and the most critical in semi-arid regions like the Intermountain West of the United States. Such regions are characterized by low precipitation, the majority of which is transferred to the atmosphere from the soil and vegetation as evapotranspiration (ET). Quantification of ET is thus crucial for understanding the balance of water within the region, which is important for efficiently planning the available water resources. This study was motivated towards advancing the estimation of actual ET (ETA) in mountain ecosystems, where the variation in different types of vegetation and non-uniformity …


Integration Of Remote Sensing And Proximal Sensing For Improvement Of Field Scale Water Management, Foad Foolad Jun 2018

Integration Of Remote Sensing And Proximal Sensing For Improvement Of Field Scale Water Management, Foad Foolad

Department of Civil and Environmental Engineering: Dissertations, Theses, and Student Research

Water is one of the most precious natural resources, and sustainable water resources development ‎‎is a significant challenge facing water managers over the coming decades. Accurate estimation of ‎‎the different components of the hydrologic cycle is key for water managers and planners in order ‎‎to achieve sustainable water resources development. The primary goal of this dissertation was to ‎investigate techniques to combine datasets acquired by remote and proximal sensing and in-situ ‎sensors for the improvement of monitoring near surface water fluxes. This dissertation is ‎separated into three site-specific case studies. First study, investigated the feasibility of using ‎inverse vadose zone …


Evaluation Of A Hybrid Reflectance-Based Crop Coefficient And Energy Balance Evapotranspiration Model For Irrigation Management, J. Burdette Barker, Christopher M. U. Neale, Derek M. Heeren, Andrew E. Suyker Apr 2018

Evaluation Of A Hybrid Reflectance-Based Crop Coefficient And Energy Balance Evapotranspiration Model For Irrigation Management, J. Burdette Barker, Christopher M. U. Neale, Derek M. Heeren, Andrew E. Suyker

Department of Biological Systems Engineering: Papers and Publications

Accurate generation of spatial soil water maps is useful for many types of irrigation management. A hybrid remote sensing evapotranspiration (ET) model combining reflectance-based basal crop coefficients (Kcbrf) and a two-source energy balance (TSEB) model was modified and validated for use in real-time irrigation management. We modeled spatial ET for maize and soybean fields in eastern Nebraska for the 2011-2013 growing seasons. We used Landsat 5, 7, and 8 imagery as remote sensing inputs. In the TSEB, we used the Priestly-Taylor (PT) approximation for canopy latent heat flux, as in the original model formulations. We also used the …


Evaluation Of Variable Rate Irrigation Using A Remote-Sensing-Based Model, John Burdette Barker, Derek M. Heeren, Christopher M.U. Neale, Daran Rudnick Jan 2018

Evaluation Of Variable Rate Irrigation Using A Remote-Sensing-Based Model, John Burdette Barker, Derek M. Heeren, Christopher M.U. Neale, Daran Rudnick

Department of Biological Systems Engineering: Papers and Publications

Improvements in soil water balance modeling can be beneficial for optimizing irrigation management to account for spatial variability in soil properties and evapotranspiration (ET). A remote-sensing-based ET and water balance model was tested for irrigation management in an experiment at two University of Nebraska-Lincoln research sites located near Mead and Brule, Nebraska. Both fields included a center pivot equipped with variable rate irrigation (VRI). The study included maize in 2015 and 2016 and soybean in 2016 at Mead, and maize in 2016 at Brule, for a total of 210 plot-years. Four irrigation treatments were applied at Mead, including: VRI based …


Crop Evapotranspiration, Irrigationwater Requirement And Water Productivity Of Maize From Meteorological Data Under Semiarid Climate, Koffi Djaman, Michael O'Neill, Curtis K. Owen, Daniel Smeal, Komlan Koudahe, Margaret West, Samuel Allen, Kevin Lombard, Suat Irmak Jan 2018

Crop Evapotranspiration, Irrigationwater Requirement And Water Productivity Of Maize From Meteorological Data Under Semiarid Climate, Koffi Djaman, Michael O'Neill, Curtis K. Owen, Daniel Smeal, Komlan Koudahe, Margaret West, Samuel Allen, Kevin Lombard, Suat Irmak

Department of Biological Systems Engineering: Papers and Publications

Under the semiarid climate of the Southwest United States, accurate estimation of crop water use is important for water management and planning under conservation agriculture. The objectives of this study were to estimate maize water use and water productivity in the Four Corners region of New Mexico. Maize was grown under full irrigation during the 2011, 2012, 2013, 2014 and 2017 seasons at the Agricultural Science Center at Farmington (NM). Seasonal amounts of applied irrigation varied from 576.6 to 1051.6 mm and averaged 837.7 mm and the total water supply varied from 693.4 to 1140.5 mm. Maize actual evapotranspiration was …


Estimating Evapotranspiration Using The Complementary Relationship And The Budyko Framework, Homin Kim Dec 2017

Estimating Evapotranspiration Using The Complementary Relationship And The Budyko Framework, Homin Kim

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Land surface actual evapotranspiration (ET) is an important process in terrestrial water balance and reliable estimates of ET are necessary to improve water resources management. In this regard, there is a growing body of literature that recognizes the importance of an accurate ET model. Among them, the complementary relationship between ET and potential ET (ETP) has been the subject of many studies because it uses only meteorological data as inputs. However, there is an increasing concern that some complementary relationship models perform poorly under dry conditions. To overcome this limitation, this dissertation was designed to extend the latest complementary relationship …


Mapping Annual Riparian Water Use Based On The Single-Satellite-Scene Approach, Kul Khand, Saleh Taghvaeian, Leila Hassan-Esfahani Aug 2017

Mapping Annual Riparian Water Use Based On The Single-Satellite-Scene Approach, Kul Khand, Saleh Taghvaeian, Leila Hassan-Esfahani

Civil and Environmental Engineering Faculty Publications

The accurate estimation of water use by groundwater-dependent riparian vegetation is of great importance to sustainable water resource management in arid/semi-arid regions. Remote sensing methods can be effective in this regard, as they capture the inherent spatial variability in riparian ecosystems. The single-satellite-scene (SSS) method uses a derivation of the Normalized Difference Vegetation Index (NDVI) from a single space-borne image during the peak growing season and minimal ground-based meteorological data to estimate the annual riparian water use on a distributed basis. This method was applied to a riparian ecosystem dominated by tamarisk along a section of the lower Colorado River …


Bias And Other Error In Gridded Weather Data Sets And Their Impacts On Estimating Reference Evapotranspiration, Philip A. Blankenau May 2017

Bias And Other Error In Gridded Weather Data Sets And Their Impacts On Estimating Reference Evapotranspiration, Philip A. Blankenau

Department of Civil and Environmental Engineering: Dissertations, Theses, and Student Research

Gridded weather data sets are increasingly used in a variety of hydrologic and agricultural applications due to their complete spatial and temporal coverage. One application of gridded data sets is the estimation of evapotranspiration (ET). Several operational remote sensing (RS) approaches for estimating ET, such as the SEBAL, METRIC and EEFlux models, require estimates of reference ET (ETref), where ETref is expected ET from a hypothetical reference crop of clipped grass or alfalfa. Gridded weather data provide for the computation of ETref in all areas of a remote sensing image, and therefore potentially remove the need for dense weather station …


Hydrologic Response Caused By Wetland Expansion At Huntley Meadows Park In Hybla Valley, Virginia, Stephen Fraser Stone Apr 2017

Hydrologic Response Caused By Wetland Expansion At Huntley Meadows Park In Hybla Valley, Virginia, Stephen Fraser Stone

OES Theses and Dissertations

The goal of this study was to understand the effects of wetland expansion across a watershed. The 2013 restoration and expansion of the wetlands at Huntley Meadows Park (Fairfax County, VA) performed by Wetland Studies and Solutions, Inc. provided the opportunity to study this process. The 630 ha park contains more than 364 ha of freshwater emergent and freshwater forested wetlands. The restoration and expansion project used a subsurface vinyl-piling dam that impedes groundwater flow leaving the wetland, thus expanding the existing pond and the surrounding wetland.

This study used a network of more than twenty monitoring instruments making observations …


Spatial And Temporal Changes In Maize And Soybean Grain Yield, Precipitation Use Efficiency, And Crop Water Productivity In The U.S. Great Plains, Meetpal S. Kukal, S. Irmak Jan 2017

Spatial And Temporal Changes In Maize And Soybean Grain Yield, Precipitation Use Efficiency, And Crop Water Productivity In The U.S. Great Plains, Meetpal S. Kukal, S. Irmak

Department of Biological Systems Engineering: Papers and Publications

Sustainable agricultural utilization of the limited water resources demands improvements in understanding the changes in crop water productivity (CWP) in space and time, which is often presented as a potential solution to relieve the growing pressure on fresh water resources. In addition, crop yield needs to be studied in relation to precipitation received annually and during the growing season for its contribution to reduce irrigation water requirements, which is quantified through precipitation use efficiency (PUE). Hence, systematic quantifications, mapping, and analyses of large-scale CWP and PUE levels are needed. This study aims to quantify long-term (1982-2013) information on grain yield, …


Trend Analysis In Rainfall, Reference Evapotranspiration And Aridity Index In Southern Senegal: Adaptation To The Vulnerability Of Rainfed Rice Cultivation To Climate Change, Komlan Koudahe, Koffi Djaman, Ansoumana Bodian, Suat Irkmak, Mamadou Sall, Lamine Diop, Alpha B. Balde, Daran Rudnick Jan 2017

Trend Analysis In Rainfall, Reference Evapotranspiration And Aridity Index In Southern Senegal: Adaptation To The Vulnerability Of Rainfed Rice Cultivation To Climate Change, Komlan Koudahe, Koffi Djaman, Ansoumana Bodian, Suat Irkmak, Mamadou Sall, Lamine Diop, Alpha B. Balde, Daran Rudnick

Department of Biological Systems Engineering: Papers and Publications

Rainfall and evapotranspiration are two vital elements for food production under rainfed agriculture. This study aims at investigating the combined changes in these variables in the form of aridly index in the southern Senegal. The temporal trends in annual and monthly (from May to October) aridity index, rainfall and evapotranspiration are examined and adaptation strategies to the vulnerability of rainfed rice cultivation to the changes are developed. The results show a significant decreasing trend in annual rainfall at all study locations for the period 1922-2015. When analyzing the trends in sub-periods, there are two clear patterns in the annual rainfall …


Evapotranspiration From Extensive Green Roofs: Influence Of Climatological Conditions, Vegetation Type, And Substrate Depth, Maria Eloisa Sia Sep 2016

Evapotranspiration From Extensive Green Roofs: Influence Of Climatological Conditions, Vegetation Type, And Substrate Depth, Maria Eloisa Sia

Electronic Thesis and Dissertation Repository

Green roofs are gaining popularity worldwide as a low impact development tool to mitigate increasing stormwater runoff within dense urban areas. Evapotranspiration (ET) is the key hydrologic process governing the capacity of a green roof to retain rainfall as it regenerates available water storage space in the green roof substrate (soil) between rainfall events. To date, there are limited data on how the interaction between different climatological conditions and design parameters (e.g., vegetation type, substrate depth) affect ET rates. This currently limits the ability to optimize green roof design for stormwater management. In this field study, the impact of climatological …


Development And Assessment Of A Groundwater Sustainability Index In Climatically Diverse Groundwater Irrigated Regions In Nebraska, Maria A. Mulet Jalil Jul 2016

Development And Assessment Of A Groundwater Sustainability Index In Climatically Diverse Groundwater Irrigated Regions In Nebraska, Maria A. Mulet Jalil

Department of Biological Systems Engineering: Dissertations and Theses

The aim of this research was to evaluate the impact of regional change in ET on groundwater level changes and the assessment and development of a groundwater sustainability index for climatically diverse regions across Nebraska during 2000-2014. Irrigation in the selected regions is predominantly supplied by groundwater. The hypothesis is that groundwater use can become sustainable if the regional evapotranspiration (ET) is managed so that it equals the ET of vegetation that is native to the region. Site locations were Box Butte, Chase, Dundy, Holt LNNRD and York Counties and 3 ecosystems were evaluated: native vegetation, dryland and irrigated cropping …


Evapotranspiration Estimation: A Study Of Methods In The Western United States, Clayton S. Lewis May 2016

Evapotranspiration Estimation: A Study Of Methods In The Western United States, Clayton S. Lewis

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Theoretical water use of well-watered vegetation in the western United States was investigated by comparing a gridded dataset developed from satellite and ground instruments to weather stations representative of irrigated agricultural conditions. Since wetter environments are cooler and therefore subject to lower levels of evaporation than the same scenario with warmer temperatures, models derived from dryland and often populated areas overestimate potential plant needs in semi-arid or arid conditions. Evaluation of the model revealed an acceptable fit for air temperatures and solar radiation but with less confidence in humidity and wind speeds. Ultimately, the last two parameters were minor components …


Analyzing Irrigation District Water Productivity By Benchmarking Current Operations Using Remote Sensing And Simulation Of Alternative Water Delivery Scenarios, Jonna D. Van Opstal May 2016

Analyzing Irrigation District Water Productivity By Benchmarking Current Operations Using Remote Sensing And Simulation Of Alternative Water Delivery Scenarios, Jonna D. Van Opstal

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

The competition for fresh water is vastly increasing particularly in semi-arid areas. Agricultural irrigation areas are urged to decrease their water use, being the largest consumer of fresh water in these areas. Improvements in irrigation management aim at increasing crop production whilst maintaining or decreasing water use. The analysis of water productivity at the irrigation district scale is challenging due to spatial heterogeneity between fields and temporal variability between growing seasons.

This dissertation makes use of satellite-based remote sensing imagery and an irrigation system simulation model to determine the water management at different spatial scales from field scale to the …


Estimation Of Surface Soil Moisture In Irrigated Lands By Assimilation Of Landsat Vegetation Indices, Surface Energy Balance Products, And Relevance Vector Machines, Alfonso F. Torres-Rua, Andres M. Ticlavilca, Roula Bachour, Mac Mckee Apr 2016

Estimation Of Surface Soil Moisture In Irrigated Lands By Assimilation Of Landsat Vegetation Indices, Surface Energy Balance Products, And Relevance Vector Machines, Alfonso F. Torres-Rua, Andres M. Ticlavilca, Roula Bachour, Mac Mckee

Civil and Environmental Engineering Faculty Publications

Spatial surface soil moisture can be an important indicator of crop conditions on farmland, but its continuous estimation remains challenging due to coarse spatial and temporal resolution of existing remotely-sensed products. Furthermore, while preceding research on soil moisture using remote sensing (surface energy balance, weather parameters, and vegetation indices) has demonstrated a relationship between these factors and soil moisture, practical continuous spatial quantification of the latter is still unavailable for use in water and agricultural management. In this study, a methodology is presented to estimate volumetric surface soil moisture by statistical selection from potential predictors that include vegetation indices and …


The Spatial Sensitivity Analysis Of Evapotranspiration Using Penman-Monteith Method At Grid Scale, Sivarajah Mylevaganam, Chittaranjan Ray Jan 2016

The Spatial Sensitivity Analysis Of Evapotranspiration Using Penman-Monteith Method At Grid Scale, Sivarajah Mylevaganam, Chittaranjan Ray

Nebraska Water Center: Faculty Publications

The need to allocate the existing water in a sustainable manner, even with the projected population growth, has made to assess the consumptive use or evapotranspiration (ET), which determines the irrigation demand. As underscored in the literature, Penman-Monteith method which is a combination of aerodynamic and energy balance method is widely used and accepted as the method of estimation of ET. However, the application of Penman-Monteith relies on many climate parameters such as relative humidity, solar radiation, temperature, and wind speed. Therefore, there exists a need to determine the parameters that are most sensitive and correlated with dependent variable ( …


A Spatial Evapotranspiration Tool At Grid Scale, Sivarajah Mylevaganam, Chittaranjan Ray Jan 2016

A Spatial Evapotranspiration Tool At Grid Scale, Sivarajah Mylevaganam, Chittaranjan Ray

Nebraska Water Center: Faculty Publications

The drastic decline in groundwater table and many other detrimental effects in meeting irrigation demand, and the projected population growth have force to evaluate consumptive use or evapotranspiration (ET), the rate of liquid water transformation to vapor from open water, bare soil, and vegetation, which determines the irrigation demand. As underscored in the literature, Penman- Monteith method which is based on aerodynamic and energy balance method is widely used and accepted as the method of estimation of ET. However, the estimation of ET is oftentimes carried out using meteorological data from climate stations. Therefore, such estimation of ET may vary …


Simple Landscape Irrigation Demand Estimation: Slide Rules, Roger Kjelgren Jan 2016

Simple Landscape Irrigation Demand Estimation: Slide Rules, Roger Kjelgren

Plants, Soils, and Climate Faculty Publications

Irrigated urban landscapes must increasingly maintain economic and ecosystem value with less water in response to drought amplified and shifted by climate change. Efficient landscape water management requires estimating water amount demanded by plants that can be replaced by irrigation to meet minimum performance expectations. The extant approach to estimating landscape water demand is conceptually muddled and often regionally inappropriate. Simplified Landscape Irrigation Demand Estimation (SLIDE) Rules distills scientifically credible assumptions about urban landscape biological and physical complexity into guidelines for estimating water demand that are conceptually accessible and operationally useful. SLIDE Rules are: 1) oasis urban reference evapotranspiration (ETo) …


Estimated Grass Grazing Removal Rate In A Semiarid Eurasian Steppe Watershed As Influenced By Climate, Xixi Wang, Shohreh Pedram, Tingxi Liu, Ruizhong Gao, Fengling Li, Yanyun Luo Jan 2016

Estimated Grass Grazing Removal Rate In A Semiarid Eurasian Steppe Watershed As Influenced By Climate, Xixi Wang, Shohreh Pedram, Tingxi Liu, Ruizhong Gao, Fengling Li, Yanyun Luo

Civil & Environmental Engineering Faculty Publications

Grazing removal rate of grasses needs to be determined for various climate conditions to address eco-environmental concerns (e.g., desertification) related to steppe grassland degradation. The conventional approach, which requires survey data on animal species and heads as well as grass consumption per individual animal, is too costly and time-consuming to be applied at a watershed scale. The objective of this study was to present a new approach that can be used to estimate grazing removal rate with no requirement of animal-related data. The application of this new approach was demonstrated in a Eurasian semiarid typical-steppe watershed for an analysis period …


Long-Term Patterns Of Air Temperatures, Daily Temperature Range, Precipitation, Grass-Reference Evapotranspiration And Aridity Index In The Usa Great Plains: Part I. Spatial Trends, Meetpal S. Kukal, Suat Irmak Jan 2016

Long-Term Patterns Of Air Temperatures, Daily Temperature Range, Precipitation, Grass-Reference Evapotranspiration And Aridity Index In The Usa Great Plains: Part I. Spatial Trends, Meetpal S. Kukal, Suat Irmak

Department of Biological Systems Engineering: Papers and Publications

Due to their substantial spatio-temporal behavior, long-term quantification and analyses of important hydrological variables are essential for practical applications in water resources planning, evaluating the water use of agricultural crop production and quantifying crop evapotranspiration patterns and irrigation management vs. hydrologic balance relationships. Observed data at over 800 sites across the Great Plains of USA, comprising of 9 states and 2,307,410 km2 of surface area, which is about 30% of the terrestrial area of the USA, were used to quantify and map large-scale and long-term (1968-2013) spatial trends of air temperatures, daily temperature range (DTR), precipitation, grass-reference evapotranspiration (ET …


Evaluation Of A Hybrid Remote Sensing Evapotranspiration Model For Variable Rate Irrigation Management, J. Burdette Barker, Christopher M. U. Neale, Derek M. Heeren Nov 2015

Evaluation Of A Hybrid Remote Sensing Evapotranspiration Model For Variable Rate Irrigation Management, J. Burdette Barker, Christopher M. U. Neale, Derek M. Heeren

Department of Biological Systems Engineering: Papers and Publications

Accurate generation of spatial irrigation prescriptions is essential for implementation and evaluation of variable rate irrigation (VRI) technology. A hybrid remote sensing evapotranspiration (ET) model was evaluated for use in developing irrigation prescriptions for a VRI center pivot. The model is a combination of a two-source energy balance model and a reflectance based crop coefficient water balance model. Spatial ET and soil water depletion were modeled for a 10 km2 area consisting of rainfed and irrigated maize fields in eastern Nebraska for 2013. Multispectral images from Landsat 8 Operational Land Imager and Thermal Infrared Sensor were used as model …


Slides: Food Production: Technical Challenges In Agricultural Water Conservation, Perry Cabot Jun 2015

Slides: Food Production: Technical Challenges In Agricultural Water Conservation, Perry Cabot

Innovations in Managing Western Water: New Approaches for Balancing Environmental, Social and Economic Outcomes (Martz Summer Conference, June 11-12)

Presenter: Dr. Perry Cabot, Research Scientist and Extension Specialist, Colorado Water Institute, Colorado State University

35 slides


Stormwater Management Performance Of Green Roofs, Andrew W. Sims May 2015

Stormwater Management Performance Of Green Roofs, Andrew W. Sims

Electronic Thesis and Dissertation Repository

Green roofs are gaining recognition in North America as effective tools for managing stormwater runoff in urban areas. A greater understanding of how green roofs perform with respect to fundamental stormwater management criteria, such as stormwater retention and peak flow attenuation is required. This study investigated the impact that changing climates have on the retention performance of three green roofs in London, Calgary, and Halifax. It was found that Calgary (67%) has significantly better retention performance then both London (48%) and Halifax (34%). However, London retained the greatest volume of stormwater (758 mm), followed by Halifax (517 mm) then Calgary …


Surface Energy Balance, Evapotranspiration, And Surface Coefficients During Non-Growing Season In A Maize-Soybean Cropping System, Lameck O. Odhiambo, Suat Irmak Jan 2015

Surface Energy Balance, Evapotranspiration, And Surface Coefficients During Non-Growing Season In A Maize-Soybean Cropping System, Lameck O. Odhiambo, Suat Irmak

Department of Biological Systems Engineering: Papers and Publications

Surface energy balance components, including actual evapotranspiration (ET), were measured in a reducedtill maize-soybean field in south central Nebraska during three consecutive non-growing seasons (2006/2007, 2007/2008, and 2008/2009). The relative fractions of the energy balance components were compared across the non-growing seasons, and surface coefficients (Kc) were determined as a ratio of measured ET to estimated alfalfa (ETr) and grass (ETo) reference ET (ETref). The non-growing season following a maize crop had 25% to 35% more field surface covered with crop residue as compared to the non-growing seasons following soybean crops. Net …


Vulnerability Of Crops And Native Grasses To Summer Drying In The U.S. Southern Great Plains, Naama Raz-Yaseef, Dave P. Billesbach, Marc L. Fischer, Sebastien C. Biraud, Stacey A. Gunter, James A. Bradford, Margaret S. Torn Jan 2015

Vulnerability Of Crops And Native Grasses To Summer Drying In The U.S. Southern Great Plains, Naama Raz-Yaseef, Dave P. Billesbach, Marc L. Fischer, Sebastien C. Biraud, Stacey A. Gunter, James A. Bradford, Margaret S. Torn

Department of Biological Systems Engineering: Papers and Publications

The Southern Great Plains are characterized by a fine-scale mixture of different land-cover types, predominantly winter-wheat and grazed pasture, with relatively small areas of other crops, native prairie, and switchgrass. Recent droughts and predictions of increased drought in the Southern Great Plains, especially during the summer months, raise concern for these ecosystems. We measured ecosystem carbon and water fluxes with eddy-covariance systems over cultivated cropland for 10 years, and over lightly grazed prairie and new switchgrass fields for 2 years each. Growing-season precipitation showed the strongest control over net carbon uptake for all ecosystems, but with a variable effect: grasses …


Vapor Flow Resistance Of Dry Soil Layer To Soil Water Evaporation In Arid Environment: An Overview, Xixi Wang Jan 2015

Vapor Flow Resistance Of Dry Soil Layer To Soil Water Evaporation In Arid Environment: An Overview, Xixi Wang

Civil & Environmental Engineering Faculty Publications

Evaporation from bare sandy soils is the core component of the hydrologic cycle in arid environments, where vertical water movement dominates. Although extensive measurement and modeling studies have been conducted and reported in existing literature, the physics of dry soil and its function in evaporation is still a challenging topic with significant remaining issues. Thus, an overview of the previous findings will be very beneficial for identifying further research needs that aim to advance our understanding of the vapor flow resistance (VFR) effect on soil water evaporation as influenced by characteristics of the dry soil layer (DSL) and evaporation zone …


Improved Simulation Of Evapotranspiration For Land Use And Climate Change Impact Analysis At Catchment Scale, Ann Van Griensven, Samita Maharjan, Tadesse Alemayehu Jun 2014

Improved Simulation Of Evapotranspiration For Land Use And Climate Change Impact Analysis At Catchment Scale, Ann Van Griensven, Samita Maharjan, Tadesse Alemayehu

International Congress on Environmental Modelling and Software

Evapotranspiration is not only one of the major components of the hydrological cycle, it also controls impacts of drivers such as climate and land use changes. One of the widely used simulation tools for climate and impact studies is the Soil and Water Assessment Tool {SWAT). This study evaluates the evapotranspiration processes in SWAT in the Kenyan Mau forest within the Mara basin that drains to Lake Victoria. The study reveals that typical SWAT applications have flaws as in the implementation or parameterisation of tropical forests.

To improve the use of SWAT for land use and climate change studies, the …


Analyses Of Groundwater Contribution To A Riverine Wetland, Farzad Mahmoodinobar Jan 2014

Analyses Of Groundwater Contribution To A Riverine Wetland, Farzad Mahmoodinobar

Dissertations

Rainfall, runoff, overbank flow and groundwater, all contribute water to wetlands. Each transport element is associated with unique modeling approaches and uncertainties. Transpiration is perhaps the hardest to quantify as it is subject to all the variability of plant growth. Transpiration causes land area to lose moisture and the loss amount depends on precipitation incidence, the temperature and type and extent of vegetation. Plants can intercept virtually all recharge during the growing season and almost none from late fall to early spring in northeastern United States. Thus, an improvement in the transpiration element can contribute considerably to an improved groundwater …