Open Access. Powered by Scholars. Published by Universities.®

Complex Fluids Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Complex Fluids

Microfluidic Study Of Gravity-Driven Drainage And Coalescence Of Aqueous Two Dimensional Foams, Justin D. Heftel Jan 2019

Microfluidic Study Of Gravity-Driven Drainage And Coalescence Of Aqueous Two Dimensional Foams, Justin D. Heftel

Dissertations and Theses

Foams, a two-phase dispersion, are staples of the cosmetic, personal care, petroleum, pharmaceutical, and other industries. Central to these applications is the stability of the dispersion against separation. Foams break down by two mechanisms: the first is bubble coalescence, which is driven by the gravity drainage of the continuous phase. The drainage acts to push the bubbles against each other, and leads to the formation of thin lamellae, which break and cause the coalescence. The second is the mass transfer of the dispersed phase through the continuous phase, which is caused by the difference in pressures between the bubbles and …


Development Of Microdialysis Probes In Series Approach Toward Eliminating Microdialysis Sampling Calibration: Miniaturization Into A Pdms Microfluidic Device, Randy Espinal Cabrera May 2018

Development Of Microdialysis Probes In Series Approach Toward Eliminating Microdialysis Sampling Calibration: Miniaturization Into A Pdms Microfluidic Device, Randy Espinal Cabrera

Graduate Theses and Dissertations

A new microdialysis sampling method and microfluidic device were developed in vitro. The method consisted of using up to four microdialysis sampling probes connected in series to evaluate the relative recovery (RR) of different model solutes methyl orange, fluorescein isothiocyanate (FITC)-dextran average mol. wt. 4,000 (FITC-4), FITC-10, FITC-20, and FITC-40. Different flow rates (0.8, 1.0, and 1.5 µL/min) were used to compare experimentally observed relative recoveries with theoretical estimations. With increasing the number of probes in series, the relative recovery increases and ~100% (99.7% ± 0.9%) relative recovery for methyl orange was obtained. For larger molecules such as fluorescein isothiocyanate …


Developing A 3d In Vitro Model By Microfluidics, Hung-Ta Chien Jan 2018

Developing A 3d In Vitro Model By Microfluidics, Hung-Ta Chien

Dissertations and Theses

In vitro tissue models play an important role in providing a platform that mimics the realistic tissue microenvironment for stimulating and characterizing the cellular behavior. In particular, the hydrogel-based 3D in vitro models allow the cells to grow and interact with their surroundings in all directions, thus better mimicking in vivo than their 2D counterparts. The objective of this thesis is to establish a 3D in vitro model that mimics the anatomical and functional complexity of the realistic cancer microenvironment for conveniently studying the transport coupling in porous tissue structures. We pack uniform-sized PEGDA-GelMA microgels in a microfluidic chip to …


Shear Driven Micro-Fluidic Pump For Cardiovascular Applications, Nihad E. Daidzic Apr 2017

Shear Driven Micro-Fluidic Pump For Cardiovascular Applications, Nihad E. Daidzic

Aviation Department Publications

A valveless shear-driven micro-fluidic pump design (SDMFP) for hemodynamic applications is presented in this work. One of the possible medical and biomedical applications is in-vivo hemodynamic (human blood circulation) support/assist. One or more SDMFPs can be inserted/implanted into vascular lumens in a form of a stent/duct in series and/or in parallel (bypass duct) to support blood circulation in-vivo. A comprehensive review of various micro-pump designs up to about mid 2000’s is given in [1,2]. Many of micropump designs considered are not suitable for in-vivo or even in-vitro medical/biomedical applications.

Operating principles, design, and SDMFP features are given in [3]. A …


Evaluation Of A Microfluidic Mixer Utilizing Staggered Herringbone Channels: A Computational Fluid Dynamics Approach, Brian Hama Jan 2017

Evaluation Of A Microfluidic Mixer Utilizing Staggered Herringbone Channels: A Computational Fluid Dynamics Approach, Brian Hama

ETD Archive

Microfluidic platforms offer a variety of advantages including improved heat transfer, low working volumes, ease of scale-up, and strong user control on parameters. However, flow within microfluidic channels occurs at low Reynolds numbers, which makes mixing difficult to accomplish. Adding V-shaped ridges to channel walls, a pattern called the staggered herringbone design (SHB), might alleviate this problem by introducing transverse flow patterns that enable enhanced mixing. However, certain factors affecting the SHB mixer’s performance remain largely unexplored.

In this work, a microfluidic mixer utilizing the SHB geometry was developed and characterized using computational fluid dynamics based simulations and complimentary experiments. …


The Influence Of Relative Particle Size And Material Interactions On The Flow-Induced Detachment Of Particles From A Microchannel, Morgan Brittany Mayfield Jul 2016

The Influence Of Relative Particle Size And Material Interactions On The Flow-Induced Detachment Of Particles From A Microchannel, Morgan Brittany Mayfield

Graduate Theses - Chemical Engineering

Particulate transport in microfluidic channels is difficult due to confined geometries and low flow rates, which promote solids settling. To re-entrain these solids, the detachment behavior of closely-fitting particles from microchannel walls must be understood. Experiments were completed to examine the effects of particle size and material interactions on particle detachment velocity. Studies were conducted for various sizes of glass and poly(methyl methacrylate), PMMA, spheres in glass and poly(dimethyl siloxane), PDMS, microfluidic channels. In addition, an inexpensive method to produce monodisperse PMMA microparticles was developed. To analyze the effect of material interactions, the work of adhesion between the particle and …


Use Of A Porous Membrane For Gas Bubble Removal In Microfluidic Channels: Physical Mechanisms And Design Criteria, Jie Xu, Regis Vaillant, Daniel Attinger Oct 2010

Use Of A Porous Membrane For Gas Bubble Removal In Microfluidic Channels: Physical Mechanisms And Design Criteria, Jie Xu, Regis Vaillant, Daniel Attinger

Daniel Attinger

We demonstrate and explain a simple and efficient way to remove gas bubbles from liquid-filled microchannels, by integrating a hydrophobic porous membrane on top of the microchannel. A prototype chip is manufactured in hard, transparent polymer with the ability to completely filter gas plugs out of a segmented flow at rates up to 7.4 μl/s/mm2 of membrane area. The device involves a bubble generation section and a gas removal section. In the bubble generation section, a T-junction is used to generate a train of gas plugs into a water stream. These gas plugs are then transported toward the gas removal …