Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Nanoparticles

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 136

Full-Text Articles in Chemical Engineering

Non-Equilibrium Colloidal Phenomena In Magnetic Fields And Photoillumination: From Controlling Living Microbots To Understanding Microplastics, Ahmed Al Harraq Jan 2023

Non-Equilibrium Colloidal Phenomena In Magnetic Fields And Photoillumination: From Controlling Living Microbots To Understanding Microplastics, Ahmed Al Harraq

LSU Doctoral Dissertations

Colloids are a ubiquitous class of materials composed of microscopic particles suspended in a continuous phase which are found in everyday products and in nature. Colloids are also useful models for studying the spontaneous arrangement of matter from individual building blocks to mesophases. Standard treatment of colloid science is based on the assumption of equilibrium conditions, as defined in traditional thermodynamics. However, novel assembly mechanisms and motility are unlocked by pushing colloids away from equilibrium using external energy. In addition, many colloids in nature and in industrial applications exchange energy and mass with the surrounding environment thus behaving in a …


Size Distribution, Elemental Composition And Morphology Of Nanoparticles Separated From Respirable Coal Mine Dust, Shoeleh Assemi, Lei Pan, Xuming Wang, Titilayo Akinseye, Jan D. Miller Jan 2023

Size Distribution, Elemental Composition And Morphology Of Nanoparticles Separated From Respirable Coal Mine Dust, Shoeleh Assemi, Lei Pan, Xuming Wang, Titilayo Akinseye, Jan D. Miller

Michigan Tech Publications

Nanoparticles, defined as particles with one dimension below 100 nm, contribute little to the total mass concentration in respirable coal mine dust (RCMD) toxicological studies, but they could have a considerable part in the adverse health effects by RCMD inhalation. It has been shown that inhaled nanoparticles can penetrate deep into the lung and could plausibly contribute to acute and chronic pulmonary diseases by triggering oxidative stress formation and inducing inflammation. RCMD nanoparticles from samples collected in an underground mine in the United States were analyzed by a particle separation technique, field-flow fractionation (FFF), for size, morphology, and elemental composition. …


Using Magnesium Oxide Nanoparticles In A Magnetic Field To Enhance Oil Production From Oil-Wet Carbonate Reservoirs, F. Amrouche, M. J. Blunt, Stefan Iglauer, M. Short, T. Crosbie, E. Cordero, D. Xu Jan 2023

Using Magnesium Oxide Nanoparticles In A Magnetic Field To Enhance Oil Production From Oil-Wet Carbonate Reservoirs, F. Amrouche, M. J. Blunt, Stefan Iglauer, M. Short, T. Crosbie, E. Cordero, D. Xu

Research outputs 2022 to 2026

Enhanced oil production can maximise yield from depleted reservoirs, and in the face of dwindling global oil reserves can reduce the need for exploratory drilling during the transition away from fossil fuels. A hybrid technique, merging a magnetic field (MF) and magnesium oxide (MgO) nanoparticles (NPs), was investigated as a potential method of enhancing oil production from oil-wet carbonate reservoirs. The impact of this hybrid technique on rock wettability, zeta potential, and interfacial tension was also investigated. Displacement experiments were carried out on oil-wet Austin chalk – a laboratory carbonate rock analogue – using MgO NPs in deionized water (DW) …


Structure And Morphology Of Photoreactive Monomer–Nanoparticle Mixtures Under Patterned Irradiation, Shreyas Pathreeker Dec 2022

Structure And Morphology Of Photoreactive Monomer–Nanoparticle Mixtures Under Patterned Irradiation, Shreyas Pathreeker

Dissertations - ALL

Establishing processing–structure relationships is central to materials science. In this work, we seek answers to whether morphology can be controlled during Light–Induced Self–Writing (LISW) in polymer composite materials, and if yes, how? LISW is based on the ability of light to undergo divergence–free propagation in photoreactive media due to photopolymerization–induced rise in refractive index of the medium. Notably, LISW in polymeric materials has found use predominantly for the fabrication of optical waveguides but has not been explored in polymer–inorganic mixtures. Using through–mask projection which creates a spatially periodic array of optical beams, this work extends LISW to nanoparticle–monomer mixtures to …


Controlling Differentiation Of Adult Stem Cells Via Cell-Derived Nanoparticles: Implications In Bone Repair, Shruthi Polla Ravi, Yasmeen Shamiya, Aishik Chakraborty, Ali Coyle, Alap A. Zahid, Jin Wang, Michael Boutilier, Emmanuel Ho, Arghya Paul Dec 2022

Controlling Differentiation Of Adult Stem Cells Via Cell-Derived Nanoparticles: Implications In Bone Repair, Shruthi Polla Ravi, Yasmeen Shamiya, Aishik Chakraborty, Ali Coyle, Alap A. Zahid, Jin Wang, Michael Boutilier, Emmanuel Ho, Arghya Paul

Chemical and Biochemical Engineering Publications

No abstract provided.


Insight Into Nano-Chemical Enhanced Oil Recovery From Carbonate Reservoirs Using Environmentally Friendly Nanomaterials, Ali Ahmadi, Abbas Khaksar Manshad, Jagar A. Ali, Stefan Iglauer, S. Mohammad Sajadi, Alireza Keshavarz, Amir H. Mohammadi Oct 2022

Insight Into Nano-Chemical Enhanced Oil Recovery From Carbonate Reservoirs Using Environmentally Friendly Nanomaterials, Ali Ahmadi, Abbas Khaksar Manshad, Jagar A. Ali, Stefan Iglauer, S. Mohammad Sajadi, Alireza Keshavarz, Amir H. Mohammadi

Research outputs 2022 to 2026

The use of nanoparticles (NPs) in enhanced oil recovery (EOR) processes is very effective in reducing the interfacial tension (IFT) and surface tension (ST) and altering the wettability of reservoir rocks. The main purpose of this study was to use the newly synthesized nanocomposites (KCl / SiO2 / Xanthan NCs) in EOR applications. Several analytical techniques including X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM) were applied to confirm the validity of the synthesized NCs. From the synthesized NCs, nanofluids were prepared at different concentrations of 100-2000 ppm and characterized using electrical conductivity, IFT, …


Elucidating Mammalian Cellular Responses To The Uptake Of Nanoparticles (Nps), Pathogens, And Lipoproteins: Similarities And Differences, Monireh Asoudeh Aug 2022

Elucidating Mammalian Cellular Responses To The Uptake Of Nanoparticles (Nps), Pathogens, And Lipoproteins: Similarities And Differences, Monireh Asoudeh

Doctoral Dissertations

Soft poly-ethylene-glycol (PEG)-based soft nanoparticles (NPs) including cylindrical (CNPs) micelles, spherical (SNPs) micelles, and lipid bilayer vesicles (LNPs) are thought to be treated as foreign objects by mammalian phagocytes. If this hypothesis is true, NPs should trigger a proinflammatory, autophagic phenotype that is similar to the one seen when macrophages phagocytose pathogens or when macrophage surface expressed proteins bind pathogen surface factors such as lipopolysaccharide (LPS). Here, we show that macrophage responses to the above NPs are almost completely unique from those triggered by group A streptococcus (GAS) pathogens (JRS4 cells) and LPS. Instead, macrophages treat these soft NPs more …


Bioremediation Of Petroleum-Based Contaminants By Alkane-Degrading Bacterium Alcanivorax Borkumensis, Amber Julaine Pete Jul 2022

Bioremediation Of Petroleum-Based Contaminants By Alkane-Degrading Bacterium Alcanivorax Borkumensis, Amber Julaine Pete

LSU Doctoral Dissertations

The world’s dependence on petroleum hydrocarbons has led to significant environmental implications. For example, oil spills cause lasting environmental damage, and the increase of plastics in the marine environment has been growing, specifically, microplastics that can be difficult to detect due to their small size. Petroleum hydrocarbons occur naturally in nearly all marine environments, which has allowed hundreds of microorganisms to evolve to utilize these hydrocarbons as their primary energy source. These microbes are classified as hydrocarbonoclastic and are utilized to remove spilled oil biodegradation. Over the last ten years, progress has been made in the biodegradation of oil spills …


Heteroaggregation Of Lignin-Zein Nanoparticles: Effects Of Relative Size And Concentration, Yada Chulakham Jan 2022

Heteroaggregation Of Lignin-Zein Nanoparticles: Effects Of Relative Size And Concentration, Yada Chulakham

LSU Master's Theses

Nanotechnology has become an advanced tool for manufacturing materials of the future. As the size of a material is reduced to a nanoscale, its surface area to volume ratio increases drastically, and its surface property becomes size dependent. This allows scientists to make use of unique properties that nanomaterials have to offer to create novel materials that otherwise could not have been achieved in meter-scale materials. As more industrial companies have planned to incorporate different types of nanomaterials into their products, it is undeniable that some of these nanomaterials will be released to the environment. Such possibility has led to …


Fine Points For Broad Bumps: The Extension Of Rietveld Refinement For Benchtop Powder Xrd Analysis Of Ultra-Small Supported Nanoparticles, Jeremiah W. Lipp Oct 2021

Fine Points For Broad Bumps: The Extension Of Rietveld Refinement For Benchtop Powder Xrd Analysis Of Ultra-Small Supported Nanoparticles, Jeremiah W. Lipp

Theses and Dissertations

The goal of this work is to demonstrate the capabilities of benchtop Bragg diffraction in characterizing ultra-small (< 2nm) nanoparticles. To this end we have established a method for accurately separating the background, adjusting for relevant intensity effects, and analyzing the results with Rietveld refinement. This method is applied to the characterization of six silica-supported “noble” metals under ambient conditions: Pt, Pd, Ir, Rh, Ru, and Au. Surprisingly, Bragg diffraction is capable of shining light on this difficult-to-characterize size region – revealing the propensity of these metal nanoparticles to oxidize at room temperature. Preliminary findings for future work are also discussed: extending our method to crystalline supports and fluorescent samples.


Heteroacene-Based Amphiphile As A Molecular Scaffold For Bioimaging Probes, Tharindu A. Ranathunge, Mahesh Loku Yaddehige, Jordan H. Varma, Cameron Smith, Jay Nguyen, Iyanuoluwani Owolabi, Wojciech Kolodziejczyk, Nathan I. Hammer, Glake Hill, Alex Flynt, Davita L. Watkins Aug 2021

Heteroacene-Based Amphiphile As A Molecular Scaffold For Bioimaging Probes, Tharindu A. Ranathunge, Mahesh Loku Yaddehige, Jordan H. Varma, Cameron Smith, Jay Nguyen, Iyanuoluwani Owolabi, Wojciech Kolodziejczyk, Nathan I. Hammer, Glake Hill, Alex Flynt, Davita L. Watkins

Faculty and Student Publications

The challenges faced with current fluorescence imaging agents have motivated us to study two nanostructures based on a hydrophobic dye, 6H-pyrrolo[3,2-b:4,5-b’]bis [1,4]benzothiazine (TRPZ). TRPZ is a heteroacene with a rigid, pi-conjugated structure, multiple reactive sites, and unique spectroscopic properties. Here we coupled TRPZ to a tert-butyl carbamate (BOC) protected 2,2-bis(hydroxymethyl)propanoic acid (bisMPA) dendron via azide-alkyne Huisgen cycloaddition. Deprotection of the protected amine groups on the dendron afforded a cationic terminated amphiphile, TRPZ-bisMPA. TRPZ-bisMPA was nanoprecipitated into water to obtain nanoparticles (NPs) with a hydrodynamic radius that was comparison, TRPZ-PG was encapsulated in pluronic-F127 (Mw = 12 kD), a polymer surfactant …


Nanoparticles For Targeted Drug Delivery To Cancer Stem Cells: A Review Of Recent Advances, Yavuz Nuri Ertas, Keyvan Abedu Dorcheh, Ali Akbari, Esmaiel Jabbari Jul 2021

Nanoparticles For Targeted Drug Delivery To Cancer Stem Cells: A Review Of Recent Advances, Yavuz Nuri Ertas, Keyvan Abedu Dorcheh, Ali Akbari, Esmaiel Jabbari

Faculty Publications

Cancer stem cells (CSCs) are a subpopulation of cells that can initiate, self-renew, and sustain tumor growth. CSCs are responsible for tumor metastasis, recurrence, and drug resistance in cancer therapy. CSCs reside within a niche maintained by multiple unique factors in the microenvironment. These factors include hypoxia, excessive levels of angiogenesis, a change of mitochondrial activity from aerobic aspiration to aerobic glycolysis, an upregulated expression of CSC biomarkers and stem cell signaling, and an elevated synthesis of the cytochromes P450 family of enzymes responsible for drug clearance. Antibodies and ligands targeting the unique factors that maintain the niche are utilized …


Copper Oxide Nanoparticle Diameter Mediates Serum-Sensitive Toxicity In Beas-2b Cells, Angie S. Morris, Brittany E. Givens, Aaron Silva, Aliasger K. Salem Feb 2021

Copper Oxide Nanoparticle Diameter Mediates Serum-Sensitive Toxicity In Beas-2b Cells, Angie S. Morris, Brittany E. Givens, Aaron Silva, Aliasger K. Salem

Chemical and Materials Engineering Faculty Publications

Copper oxide (CuO) nanoparticles (NPs) are abundant in manufacturing processes, but they are an airway irritant. In vitro pulmonary toxicity of CuO NPs has been modeled using cell lines such as human bronchial epithelial cell line BEAS-2B. In 2D in vitro culture, BEAS-2B undergoes squamous differentiation due to the presence of serum. Differentiation is part of the repair process of lung cells in vivo that helps to preserve the epithelial lining of the respiratory tract. Herein, the effects of serum on the hydrodynamic diameter, cellular viability, cellular differentiation, and cellular uptake of 5 and 35 nm CuO NPs are investigated, …


Detection Of 2,4,6-Trinitrotoluene Using A Colorimetric Gold Nanoparticle Air Cassette Filter, Andrea I. Ferrer Vega Jan 2021

Detection Of 2,4,6-Trinitrotoluene Using A Colorimetric Gold Nanoparticle Air Cassette Filter, Andrea I. Ferrer Vega

Theses and Dissertations

Trinitrotoluene (TNT) is an explosive commonly used during military and terrorist activities. Current methods to identify this compound require sampling, transport and analysis at a forensic lab using analytical instrumentation. However, on-site detection is needed to assist efforts to prevent detonation. Gold nanoparticles have been used as sensors throughout the years due to their versatility and surface enhanced Raman scattering properties in the presence of an analyte and low limits of detection. By taking advantage of the Meisenheimer complex that TNT forms in the presence of amines, it is possible to determine its presence at picogram levels. Subsequently, adhering amine …


Detection Of 2,4,6-Trinitrotoluene Using A Colorimetric Gold Nanoparticle Air Cassette Filter, Andrea I. Ferrer Vega Jan 2021

Detection Of 2,4,6-Trinitrotoluene Using A Colorimetric Gold Nanoparticle Air Cassette Filter, Andrea I. Ferrer Vega

Master of Science in Forensic Science Directed Research Projects

Trinitrotoluene (TNT) is an explosive commonly used during military and terrorist activities. Current methods to identify this compound require sampling, transport and analysis at a forensic lab using analytical instrumentation. However, on-site detection is needed to assist efforts to prevent detonation. Gold nanoparticles have been used as sensors throughout the years due to their versatility and surface enhanced Raman scattering properties in the presence of an analyte and low limits of detection. By taking advantage of the Meisenheimer complex that TNT forms in the presence of amines, it is possible to determine its presence at picogram levels. Subsequently, adhering amine …


Investigation Of Iron-Nickel Based Nanoparticles As Catalysts For Oxygen Evolution Reaction (Oer), Prashant Acharya Jan 2021

Investigation Of Iron-Nickel Based Nanoparticles As Catalysts For Oxygen Evolution Reaction (Oer), Prashant Acharya

Graduate Theses and Dissertations

Hydrogen fuel is increasingly seen as an appealing alternative by both the scientific and the industrial communities in the drive towards a clean energy future. Hydrogen, unlike fossil-based fuels, does not release carbon dioxide, a chief component of greenhouse gases, upon combustion. However, more than 95% of the hydrogen in the world is still produced by burning fossil fuels as this method is currently the only economically feasible option at a large industrial scale.

Water electrolysis shows a lot of potential in both hydrogen generation and in the storage of energy from renewable sources such as wind and sunlight. Likewise, …


Enhancing Emulsion Liquid Membrane System (Elm) Stability And Performance For The Extraction Of Phenol From Wastewater Using Various Nanoparticles, Faris H. Al-Ani, Qusay F. Alsalhy, Muthanna H. Al-Dahhan Jan 2021

Enhancing Emulsion Liquid Membrane System (Elm) Stability And Performance For The Extraction Of Phenol From Wastewater Using Various Nanoparticles, Faris H. Al-Ani, Qusay F. Alsalhy, Muthanna H. Al-Dahhan

Chemical and Biochemical Engineering Faculty Research & Creative Works

Emulation liquid membrane (ELM) technology has recently garnered attention as an efficient alternative for separating pollutants, but it faces the problem of instability during the application, as well as emulsion breaking. With this in mind MgO, Al2O3, and three magnetic Fe2O3 nanoparticles (of different sizes) were utilized to fabricate a new Pickering ELM system (PELM). The extraction efficiency of phenol from aqueous solution by PELM was studied with different NPs types and with different phenol concentrations (1,000; 500; 100; and 50 ppm). It was found that the type of NPs and concentration of …


Cold Plasma Enhanced Active Sites On Supported Nip Nanoparticles For The Oxygen Evolution Reaction, Michael Ricci Jan 2021

Cold Plasma Enhanced Active Sites On Supported Nip Nanoparticles For The Oxygen Evolution Reaction, Michael Ricci

Williams Honors College, Honors Research Projects

Identifying materials to efficiently facilitate the oxygen evolution reaction (OER) is key to advancing water electrolysis, an essential technology in the pathway towards a sustainable energy future. Here, we explore cold-plasma treatment as a facile method to enhance the activity of NiP nanoparticles supported on activated carbon. NiP nanoparticles were synthesized on an activated carbon support using a solid-state method and were then treated with argon, oxygen, and hydrogen plasmas for extended times. In all cases, plasma treatment reduced the number of active sites on the support. OER activity was evaluated by testing the materials in alkaline conditions. The activities …


The Varied Thermal Response Of Magnetic Iron-Oxide Nanoparticles During Induction Heating In Liquid And Solid-Liquid Phase Change Mediums, Joshua Tompkins Dec 2020

The Varied Thermal Response Of Magnetic Iron-Oxide Nanoparticles During Induction Heating In Liquid And Solid-Liquid Phase Change Mediums, Joshua Tompkins

Graduate Theses and Dissertations

This study investigates the induction heating response of uncapped iron oxide nanoparticles sonically dispersed as a nanofluid and mechanically distributed in solid phase change materials. The nanoparticles examined have a mean diameter of 14.42 nm and are magnetically heated in an alternating magnetic field at an amplitude of 72.6 kA/m at frequencies of 217, 303, and 397 kHz. Nanoparticle characterization was undertaken through transition electron microscopy, x-ray diffraction, and dynamic light scattering when in suspension. Carrier fluids were characterized through viscosity, heat capacity, and density measurements which were used in the calorimetric calculation of the specific absorption rate (SAR) of …


Nanoceria Distribution And Effects Are Mouse-Strain Dependent, Robert A. Yokel, Michael T. Tseng, D. Allan Butterfield, Matthew L. Hancock, Eric A. Grulke, Jason M. Unrine, Arnold J. Stromberg, Alan K. Dozier, Uschi M. Graham Aug 2020

Nanoceria Distribution And Effects Are Mouse-Strain Dependent, Robert A. Yokel, Michael T. Tseng, D. Allan Butterfield, Matthew L. Hancock, Eric A. Grulke, Jason M. Unrine, Arnold J. Stromberg, Alan K. Dozier, Uschi M. Graham

Pharmaceutical Sciences Faculty Publications

Prior studies showed nanoparticle clearance was different in C57BL/6 versus BALB/c mice, strains prone to Th1 and Th2 immune responses, respectively. Objective: Assess nanoceria (cerium oxide, CeO2 nanoparticle) uptake time course and organ distribution, cellular and oxidative stress, and bioprocessing as a function of mouse strain. Methods: C57BL/6 and BALB/c female mice were i.p. injected with 10 mg/kg nanoceria or vehicle and terminated 0.5 to 24 h later. Organs were collected for cerium analysis; light and electron microscopy with elemental mapping; and protein carbonyl, IL-1β, and caspase-1 determination. Results: Peripheral organ cerium significantly increased, generally more …


Fluidization Characteristics Of Group C+ Particles: Fine Powder With Nanoparticle Modulation, Yandaizi Zhou Jul 2020

Fluidization Characteristics Of Group C+ Particles: Fine Powder With Nanoparticle Modulation, Yandaizi Zhou

Electronic Thesis and Dissertation Repository

Geldart Group C particles become increasingly attractive in industry because of their small particle sizes and large specific surface areas. The main challenge in the flow and fluidization of Geldart Group C particles is their cohesive nature due to strong interparticle forces. The “nanoparticle modulation” technique was adopted to reduce the interparticle forces of Group C particles and thus significantly improved their flow and fluidization quality. Group C+ particles, a new type of fine particles with drastically reduced or insignificant interparticle forces, were created using the nano-modulation technique.

Fundamental studies provided a comprehensive understanding of the fluidization quality of …


Enhanced Water Electrolysis: Effect Of Temperature On The Oxygen Evolution Reaction At Cobalt Oxide Nanoparticles Modified Glassy Carbon Electrodes, Aya Akl, Hany A. Elazab, Mohamed A. Sadek, Mohamed S. El-Deab Jul 2020

Enhanced Water Electrolysis: Effect Of Temperature On The Oxygen Evolution Reaction At Cobalt Oxide Nanoparticles Modified Glassy Carbon Electrodes, Aya Akl, Hany A. Elazab, Mohamed A. Sadek, Mohamed S. El-Deab

Chemical Engineering

Water splitting producing hydrogen and oxygen gases appears promising in view of the increasing need of renewable energy sources and storage strategies. Investigation of stable and highly efficient electrocatalysts for oxygen evolution reaction (OER) is targeted in this study at cobalt oxide nanoparticle modified glassy carbon (nano-CoOx/GC) electrodes. The effect of the preparation (Tp) and measuring temperature (Tm) on the electrocatalytic activity of nano-CoOx/GC towards the OER is investigated under various operating conditions. Linear sweep voltammetry (LSV), cyclic voltammetry (CV) as well as SEM and XRD techniques were used to probe the electrocatalytic and morphological characteristics of nano-CoOx prepared under …


Nanohybrid Membrane Synthesis With Phosphorene Nanoparticles: A Study Of The Addition, Stability And Toxicity, Joyner Eke, Philip Alexander Mills, Jacob Ryan Page, Garrison P. Wright, Olga V. Tsyusko, Isabel C. Escobar Jul 2020

Nanohybrid Membrane Synthesis With Phosphorene Nanoparticles: A Study Of The Addition, Stability And Toxicity, Joyner Eke, Philip Alexander Mills, Jacob Ryan Page, Garrison P. Wright, Olga V. Tsyusko, Isabel C. Escobar

Center of Membrane Sciences Faculty Publications

Phosphorene is a promising candidate as a membrane material additive because of its inherent photocatalytic properties and electrical conductance which can help reduce fouling and improve membrane properties. The main objective of this study was to characterize structural and morphologic changes arising from the addition of phosphorene to polymeric membranes. Here, phosphorene was physically incorporated into a blend of polysulfone (PSf) and sulfonated poly ether ether ketone (SPEEK) doping solution. Protein and dye rejection studies were carried out to determine the permeability and selectivity of the membranes. Since loss of material additives during filtration processes is a challenge, the stability …


Synthesis, Self-Assembly And High-Pressure Properties Of Nanoparticles And Hybrid Nanocomposites, Lingyao Meng Jul 2020

Synthesis, Self-Assembly And High-Pressure Properties Of Nanoparticles And Hybrid Nanocomposites, Lingyao Meng

Nanoscience and Microsystems ETDs

Nanoparticles have gained significant scientific interests owing to their unique structural dimensions, size- and shape-tunable properties, and numerous fascinating applications, from opto-electronics, sensor devices, to energy, environmental, and medical fields. Furthermore, the synergistic integration of other materials, including organic polymers, with nanoparticles provides new opportunities and strategies to obtain nanocomposites with superior properties and functionalities. While there is already significant research on the synthesis and characterizations of nanoparticles and hybrid nanocomposites, some research questions, such as how to design and control the interfacial morphology in polymer/nanoparticle hybrid nanocomposites, how to synthesize metal- organic framework (MOF) nanoparticles in well-defined and uniform …


Enhanced Water Electrolysis: Effect Of Temperature On The Oxygen Evolution Reaction At Cobalt Oxide Nanoparticles Modified Glassy Carbon Electrodes, Aya Akl, Hany A. Elazab, Mohamed A. Sadek, Mohamed S. El-Deab Jul 2020

Enhanced Water Electrolysis: Effect Of Temperature On The Oxygen Evolution Reaction At Cobalt Oxide Nanoparticles Modified Glassy Carbon Electrodes, Aya Akl, Hany A. Elazab, Mohamed A. Sadek, Mohamed S. El-Deab

Chemical Engineering

Water splitting producing hydrogen and oxygen gases appears promising in view of the increasing need of renewable energy sources and storage strategies. Investigation of stable and highly efficient electrocatalysts for oxygen evolution reaction (OER) is targeted in this study at cobalt oxide nanoparticle modified glassy carbon (nano-CoOx/GC) electrodes. The effect of the preparation (Tp) and measuring temperature (Tm) on the electrocatalytic activity of nano-CoOx/GC towards the OER is investigated under various operating conditions. Linear sweep voltammetry (LSV), cyclic voltammetry (CV) as well as SEM and XRD techniques were used to probe the electrocatalytic and morphological characteristics of nano-CoOx prepared under …


Bijels Made By Solvent Transfer Induced Phase Separation: Formation Principles And Transport, Stephen Boakye-Ansah Jun 2020

Bijels Made By Solvent Transfer Induced Phase Separation: Formation Principles And Transport, Stephen Boakye-Ansah

Theses and Dissertations

Bijels are made of non-equilibrium particle-stabilized emulsions with a bicontinuous arrangement of the constituent fluid phases. They spontaneously form through arrested spinodal decomposition in mixtures of partially miscible liquids and neutrally wetting colloidal particles. Soon after their discovery over 10 years ago, Prof. Mike Cates, Lucasian Professor of Mathematics, predicted their future use as continuously operated cross-flow reactors for chemical reactions between immiscible reactants.

Towards this goal, work in this thesis focuses on designing bijels via Solvent Transfer Induced Phase Separation (STrIPS) for microfluidic transport applications. Structure-function relationships of STrIPS bijels stabilized by silane functionalized nanoparticles are developed. In-situ surfactant …


Water Purification Device And A Method Of Decontaminating A Water Supply, Dibakar Bhattacharyya, Li Xiao Jun 2020

Water Purification Device And A Method Of Decontaminating A Water Supply, Dibakar Bhattacharyya, Li Xiao

Chemical and Materials Engineering Faculty Patents

A water purification device is provided in the form of a hydrogel matrix containing immobilized nanoparticles that are directly synthesized in-situ in the hydrogel matrix. The hydrogel matrix is temperature sensitive, such that swelling draws in pollutants that are captured by the nanoparticles, while deswelling releases purified water. A related method of decontaminating the water supply contaminated with a target pollutant is also disclosed.


Ultrafine Particle-Particle And Particle-Ion Interactions In Aerosol Reactors, Girish Sharma May 2020

Ultrafine Particle-Particle And Particle-Ion Interactions In Aerosol Reactors, Girish Sharma

McKelvey School of Engineering Theses & Dissertations

Aerosol science and technology has enabled the material synthesis of ‘good’ nanoparticles, as well as, addressed the problem of air pollution by developing particle capture technologies for ‘bad’ nanoparticles. For material synthesis at industrial scale, flame aerosol reactors are extensively used for large-scale industrial production of ‘good’ nanoparticles. But, there exists a knowledge gap in understanding the early stages (1-10 nm) of particle formation and growth, which is necessary for tailoring the synthesized nanoparticles’ properties. To achieve this goal, measurement tools for the characterization of 1-10 nm particles are quintessential. On the other hand, to capture ‘bad’ particles, existing control …


Tunable Luminescence Of Rare Earth Doped Nanophosphors Via Adaptive Optical Properties Of Transition Metals, Pragathi Darapaneni Mar 2020

Tunable Luminescence Of Rare Earth Doped Nanophosphors Via Adaptive Optical Properties Of Transition Metals, Pragathi Darapaneni

LSU Doctoral Dissertations

Over the past decades, the development of light-emitting diodes (LEDs) to produce a wide range of wavelengths has revolutionized the solid-state lighting industry due to their higher energy efficiency and operational lifetimes. These LEDs employ rare earth (RE) doped phosphors due to their stable emission wavelengths which can be amplified when sensitized by other RE dopants (Yb, Ce) or shell layer passivation. However, there has been a push to replace the RE elements in LEDs due to increased socioeconomic issues. One proposed alternative, transition metal (TM) dopants, is typically avoided due to their susceptibility to the local crystal environment resulting …


Engineered Nanoparticles For Site-Specific Bioorthogonal Catalysis: Imaging And Therapy, Riddha Das Mar 2020

Engineered Nanoparticles For Site-Specific Bioorthogonal Catalysis: Imaging And Therapy, Riddha Das

Doctoral Dissertations

Bioorthogonal catalysis offers a strategy for chemical transformations complementary to bioprocesses and has proven to be a powerful tool in biochemistry and medical sciences. Transition metal catalysts (TMCs) have emerged as a powerful tool to execute selective chemical transformations, however, lack of biocompatibility and stability limits their use in biological applications. Incorporation of TMCs into nanoparticle monolayers provides a versatile strategy for the generation of bioorthogonal nanocatalysts known as “nanozymes”. We have fabricated a family of nanozymes using gold nanoparticles (AuNPs) as scaffolds featuring diverse chemical functional groups for controlled localization of nanozymes in biological environments, providing unique strategies for …