Open Access. Powered by Scholars. Published by Universities.®

Chemical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Faculty Publications

2007

Pyrolysis

Articles 1 - 1 of 1

Full-Text Articles in Chemical Engineering

Development Of Ruthenium-Based Catalysts For Oxygen Reduction Reaction, Lingyun Liu, Hansung Kim, Jong-Won Lee, Branko N. Popov Jan 2007

Development Of Ruthenium-Based Catalysts For Oxygen Reduction Reaction, Lingyun Liu, Hansung Kim, Jong-Won Lee, Branko N. Popov

Faculty Publications

A process was developed to synthesize ruthenium-based chelate (RuNx) electrocatalysts for the oxygen reduction reaction, using RuCl3 and propylene diammine as the Ru and N precursors, respectively. High-temperature pyrolysis has a critical role in the formation of the catalytic Ru–N sites for oxygen reduction. The RuNx catalyst modified in the presence of nitrogen-containing organic exhibited comparable catalytic activity and selectivity for oxygen reduction to the carbon-supported Pt catalyst in acidic media. The catalyst generates less than 2% hydrogen peroxide during oxygen reduction.