Open Access. Powered by Scholars. Published by Universities.®

Biological Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Discipline
Institution
Keyword
Publication Year
Publication
Publication Type
File Type

Articles 1 - 30 of 1172

Full-Text Articles in Biological Engineering

Stability Analysis Of A More General Class Of Systems With Delay-Dependent Coefficients, Chi Jin, Keqin Gu, Islam Boussaada, Silviu-Iulian Niculescu May 2019

Stability Analysis Of A More General Class Of Systems With Delay-Dependent Coefficients, Chi Jin, Keqin Gu, Islam Boussaada, Silviu-Iulian Niculescu

SIUE Faculty Research, Scholarship, and Creative Activity

This paper presents a systematic method to analyse the stability of systems with single delay in which the coefficient polynomials of the characteristic equation depend on the delay. Such systems often arise in, for example, life science and engineering systems. A method to analyze such systems was presented by Beretta and Kuang in a 2002 paper, but with some very restrictive assumptions. This work extends their results to the general case with the exception of some degenerate cases. It is found that a much richer behavior is possible when the restrictive assumptions are removed. The interval of interest for the ...


Biomass And Phycocyanin From Oil And Natural Gas Extraction Produced Water Utilizing A Cyanobacteria Dominated Rotating Algal Biofilm Reactor (Rabr), Jonathan L. Wood Aug 2018

Biomass And Phycocyanin From Oil And Natural Gas Extraction Produced Water Utilizing A Cyanobacteria Dominated Rotating Algal Biofilm Reactor (Rabr), Jonathan L. Wood

All Graduate Theses and Dissertations

The production of cyanobacterial biofilm biomass and phycocyanin from Rotating Algal Biofilm Reactors utilizing undiluted produced water from oil and natural gas extraction as a culture medium was investigated in this study. Produced water is the largest waste stream generated by the oil and natural gas industries and represents a large volume of non-potable water that may be available for algae culture with minimal impact on freshwater resources. Combining the use of produced wastewater as culture medium with the production of high value algal pigments, such as phycocyanin, may increase the economic viability of algae culture and wastewater purification. High ...


Radical Social Ecology As Deep Pragmatism: A Call To The Abolition Of Systemic Dissonance And The Minimization Of Entropic Chaos, Arielle Brender May 2018

Radical Social Ecology As Deep Pragmatism: A Call To The Abolition Of Systemic Dissonance And The Minimization Of Entropic Chaos, Arielle Brender

Student Theses 2015-Present

This paper aims to shed light on the dissonance caused by the superimposition of Dominant Human Systems on Natural Systems. I highlight the synthetic nature of Dominant Human Systems as egoic and linguistic phenomenon manufactured by a mere portion of the human population, which renders them inherently oppressive unto peoples and landscapes whose wisdom were barred from the design process. In pursuing a radical pragmatic approach to mending the simultaneous oppression and destruction of the human being and the earth, I highlight the necessity of minimizing entropic chaos caused by excess energy expenditure, an essential feature of systems that aim ...


Silane Modulation Of Protein Conformation And Self-Assembly, Abul Bashar Mohammad Giasuddin May 2018

Silane Modulation Of Protein Conformation And Self-Assembly, Abul Bashar Mohammad Giasuddin

All Graduate Theses and Dissertations

This research focused on development of nanoparticle- based therapeutics against amyloid fibrils. Amyloid fibrils are associated with various diseases such as Parkinson’s, Huntington’s, mad cow disease, Alzheimer’s, and cataracts. Amyloid fibrils develop when proteins change their shape from a native form to a pathogenic “misfolded” form. The misfolded proteins have the ability to recruit more native proteins into the pathogenic forms, which self-assemble into amyloid fibrils that are hallmarks of the various protein-misfolding diseases listed above. Amyloid fibrils are highly resistant to degradation, which may contribute to the symptoms of amyloid diseases. Synthetic drugs, natural compounds, and ...


Nutrient Limitation Of Algal Growth In Fishery Lakes, Madeline Ludwig May 2018

Nutrient Limitation Of Algal Growth In Fishery Lakes, Madeline Ludwig

Biological and Agricultural Engineering Undergraduate Honors Theses

This study investigated the effect of nutrient addition on algal growth in three United States Forest Service lakes for fishery management in Arkansas. In fishery managed lakes, fertilization works by manipulating algae growth, a basal food resource in lakes, to promote the growth of the fish population. For the nutrient addition experiments, water was collected from each lake in cubitainers and spiked with nutrients; the treatments included the control, nitrogen (+N), phosphorus (+P), and nitrogen and phosphorus (+N +P). When algal growth was visually observed, a water sample was collected from each cubitainer and analyzed for chlorophyll-α. The results showed ...


In-Cage Surface Wetting System For Cooling Poultry In Transport, Ryan Clark May 2018

In-Cage Surface Wetting System For Cooling Poultry In Transport, Ryan Clark

Biological and Agricultural Engineering Undergraduate Honors Theses

Abstract

Poultry health and mortality rates are important considerations in poultry production, as companies can minimize product loss and appeal to a consumer base whose concern for animal welfare continues to grow. Although animal welfare is a consideration for the entire poultry production process, this project focuses on the live-haul phase of the process, specifically during transport from grow houses to processing facilities. During the summer months, broiler chickens being transported can suffer from heat stress that can lead to death. This project consists of the designing and testing of an in-cage surface wetting system to minimize heat stress incidents ...


Optimizing Genetic Manipulation Of Methanogens Through Faster Cloning Techniques, Merrisa Jennings May 2018

Optimizing Genetic Manipulation Of Methanogens Through Faster Cloning Techniques, Merrisa Jennings

Biological and Agricultural Engineering Undergraduate Honors Theses

Methanogenesis is the biological production of methane. Only anaerobic archaea known as methanogens are capable of such a metabolic feat. They have strict living conditions and substrate sources which determine their rate of metabolism. This is of particular importance from a greenhouse gas reduction perspective or biogas capturing perspective. One of the best ways to optimize methanogen methane production is via genetic manipulation. The current procedures are timely though, therefore a faster cloning processes should be developed. The objective of this study was to optimize a premade genetic transformation kit known as the Gibson Kit. The Gibson Kit was supposed ...


Investigations Of Polyhydroxyalkanoate Secretion And Production Using Sustainable Carbon Sources, Chad L. Nielsen May 2018

Investigations Of Polyhydroxyalkanoate Secretion And Production Using Sustainable Carbon Sources, Chad L. Nielsen

All Graduate Theses and Dissertations

Polyhydroxyalkanoates (PHAs) are a type of biologically-produced plastic known for their biocompatibility and biodegradability. They have the potential to replace petroleum-based plastics as an environmentally-friendly alternative. This is beneficial because the release of plastics into environments such as the ocean and the buildup of plastics in landfills are major concerns facing society today. Currently, however, PHAs are significantly more expensive than their petroleum-based counterparts. This is largely due to the cost of carbon sources and of extracting the bioplastics from bacteria. The goal of these studies was to examine replacing traditional carbon sources used in PHA production like sugar and ...


Computational Fluid Dynamics Model For Air Velocity Through A Poultry Transport Trailer In A Holding Shed, Christian Heymsfield May 2018

Computational Fluid Dynamics Model For Air Velocity Through A Poultry Transport Trailer In A Holding Shed, Christian Heymsfield

Theses and Dissertations

Broiler production in Arkansas was valued at over $3.6 billion in 2013 (University of Arkansas Division of Agriculture Cooperative Extension Service). Consequently, improvement in any phase of the production process can have significant economic impact and animal welfare implications. One area of concern for the poultry industry is thermal stress experienced by the birds after arrival at the processing plant and before they are taken in to be processed, during which time they are left to wait in holding sheds. Various cooling strategies exist to mitigate heat stress in holding sheds, but in most cases it is unlikely that ...


The Use Of Microfluidics And Dielectrophoresis For Separation, Concentration, And Identification Of Bacteria, Cynthia Hanson May 2018

The Use Of Microfluidics And Dielectrophoresis For Separation, Concentration, And Identification Of Bacteria, Cynthia Hanson

All Graduate Theses and Dissertations

Typical bacterial analysis involves culturing and visualizing colonies on an array of agar plates. The growth patterns and colors among the array are used to identify the bacteria. For fast growing bacteria such as Escherichia coli, analysis will take one to two days. However, slow growing bacteria such as mycobacteria can take weeks to identify. In addition, there are some species of bacteria that are viable but nonculturable. This lengthy analysis time is unacceptable for life-threatening infections and emergency situations. It is clear that to decrease the analysis of the bacteria, the culturing and growth steps must be avoided. The ...


Transcriptomics To Develop Biochemical Network Models In Cyanobacteria, Bridget E. Hegarty, Jordan Peccia, Ratanachat Racharaks Apr 2018

Transcriptomics To Develop Biochemical Network Models In Cyanobacteria, Bridget E. Hegarty, Jordan Peccia, Ratanachat Racharaks

Yale Day of Data

Through targeted genetic manipulations guided by network modeling, we will create a flexible, cyanobacteria-based platform for the production of biofuel-precursors and valuable chemical products. To build gene-metabolite predictive models, we have characterized Synecococcus elongatus sp. UTEX 2973’s (henceforth, UTEX 2973) gene expression and metabolite production under a number of environmental conditions.


Kinetic Modeling Of Corn Fermentation With S. Cerevisiae Using A Variable Temperature Strategy, Augusto C. M. Souza, Mohammad Mousaviraad, Kenneth O. M. Mapoka, Kurt A. Rosentrater Apr 2018

Kinetic Modeling Of Corn Fermentation With S. Cerevisiae Using A Variable Temperature Strategy, Augusto C. M. Souza, Mohammad Mousaviraad, Kenneth O. M. Mapoka, Kurt A. Rosentrater

Agricultural and Biosystems Engineering Publications

While fermentation is usually done at a fixed temperature, in this study, the effect of having a controlled variable temperature was analyzed. A nonlinear system was used to model batch ethanol fermentation, using corn as substrate and the yeast Saccharomyces cerevisiae, at five different fixed and controlled variable temperatures. The lower temperatures presented higher ethanol yields but took a longer time to reach equilibrium. Higher temperatures had higher initial growth rates, but the decay of yeast cells was faster compared to the lower temperatures. However, in a controlled variable temperature model, the temperature decreased with time with the initial value ...


Dynamic Classification Of Moisture Stress Using Canopy And Leaf Temperature Responses To A Step Changes Of Incident Radiation, Erin E. Stevens, George E. Meyer, Ellen T. Paparozzi Apr 2018

Dynamic Classification Of Moisture Stress Using Canopy And Leaf Temperature Responses To A Step Changes Of Incident Radiation, Erin E. Stevens, George E. Meyer, Ellen T. Paparozzi

Honors Theses, University of Nebraska-Lincoln

Environmental conditions affect plant productivity and understanding how plants respond to drought stress can be measured in different ways. This study focused on measuring leaf response time to induced water stress. Leaf response time to a step increase and step decrease in radiation was computed for four species of well-watered and water-stressed plants in a controlled environment. The canopy temperature was measured with an infrared thermometer and a thermal imaging camera. Thermal images were analyzed to determine the average temperature of a selected single, unobstructed leaf at the top of the canopy. Both the canopy response time and the single ...


3d Tissue Engineering, An Emerging Technique For Pharmaceutical Research, Gregory Jensen, Christian Morrill, Yu Huang Mar 2018

3d Tissue Engineering, An Emerging Technique For Pharmaceutical Research, Gregory Jensen, Christian Morrill, Yu Huang

Biological Engineering Faculty Publications

Tissue engineering and the tissue engineering model have shown promise in improving methods of drug delivery, drug action, and drug discovery in pharmaceutical research for the attenuation of the central nervous system inflammatory response. Such inflammation contributes to the lack of regenerative ability of neural cells, as well as the temporary and permanent loss of function associated with neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, and traumatic brain injury. This review is focused specifically on the recent advances in the tissue engineering model made by altering scaffold biophysical and biochemical properties for use in the treatment of ...


Efficient One‑Step Fusion Pcr Based On Dual‑Asymmetric Primers And Two‑Step Annealing, Yilan Liu, Jinjin Chen, Anders Thygesen Jan 2018

Efficient One‑Step Fusion Pcr Based On Dual‑Asymmetric Primers And Two‑Step Annealing, Yilan Liu, Jinjin Chen, Anders Thygesen

Chemical and Biomolecular Engineering -- All Faculty Papers

Gene splicing by fusion PCR is a versatile and widely used methodology, especially in synthetic biology. We here describe a rapid method for splicing two fragments by one-round fusion PCR with a dual-asymmetric primers and two-step annealing (ODT) method. During the process, the asymmetric intermediate fragments were generated in the early stage. Thereafter, they were hybridized in the subsequent cycles to serve as template for the target full-length product. The process parameters such as primer ratio, elongation temperature and cycle numbers were optimized. In addition, the fusion products produced with this method were successfully applied in seamless genome editing. The ...


Molded Features In Pdms For Fabricating Bacterial Cellulose For Various Geometries, Mitchell Habegger Jan 2018

Molded Features In Pdms For Fabricating Bacterial Cellulose For Various Geometries, Mitchell Habegger

Honors Research Projects

The purpose of producing features on bacterial cellulose (BC) is to facilitate the elongation and alignment for cells, in this case Normal Human Dermal Fibroblast (NHDF) cells. The elongated cells have applications in wound healing, tissue engineering, disease diagnostics, and many other fields. Experiments were run to test the effectiveness of transferring features to BC sheets from features induced by fracturing on polydimethylsiloxane (PDMS) and those duplicated from molds with existing features. The features were duplicated to BC sheets by either air drying or Guided Assembly-Based Biolithography (GAB). The research results showed that fracture inducing on PDMS produced very small ...


A Collaborative Solution To Harmful Algal Blooms In Utah, Kyle Hillman, Bethany Jensen, Ammon Balle Jan 2018

A Collaborative Solution To Harmful Algal Blooms In Utah, Kyle Hillman, Bethany Jensen, Ammon Balle

Research on Capitol Hill

Harmful algal blooms (HABs)…

  • affect Utah Lake, Scofield Reservoir, Jordanelle Reservoir, Mantua Lake, and other water bodies throughout Utah
  • are toxic to public health, the environment, and the economy


Exogenous Fniii 12-14 Regulates Tgf-Β1-Induced Markers, Hilmi M. Humeid Jan 2018

Exogenous Fniii 12-14 Regulates Tgf-Β1-Induced Markers, Hilmi M. Humeid

Theses and Dissertations

The extracellular matrix protein Fibronectin (FN) plays an important role in cell contractility, differentiation, growth, adhesion, and migration. The 12th -14th Type III repeats of FN (FNIII 12-14), also referred to as the Heparin-II domain, comprise a highly promiscuous growth factor (GF) binding region. This binding domain aids in cellular signaling initiated from the ECM. Additionally, FN has the ability to assemble into fibrils under certain conditions, mostly observed during cell contractile processes such as those that initiate due to upregulation of Transforming Growth Factor Beta 1 (TGF-β1) [1], [2]. Previous work from our lab has shown that self-assembly of ...


Recovery And Utilization Of Lignin Monomers As Part Of The Biorefinery Approach, Kirsten M. Davis, Marjorie Rover, Robert C. Brown, Xianglan Bai, Zhiyou Wen, Laura R. Jarboe Dec 2017

Recovery And Utilization Of Lignin Monomers As Part Of The Biorefinery Approach, Kirsten M. Davis, Marjorie Rover, Robert C. Brown, Xianglan Bai, Zhiyou Wen, Laura R. Jarboe

Robert C. Brown

Lignin is a substantial component of lignocellulosic biomass but is under-utilized relative to the cellulose and hemicellulose components. Historically, lignin has been burned as a source of process heat, but this heat is usually in excess of the process energy demands. Current models indicate that development of an economically competitive biorefinery system requires adding value to lignin beyond process heat. This addition of value, also known as lignin valorization, requires economically viable processes for separating the lignin from the other biomass components, depolymerizing the lignin into monomeric subunits, and then upgrading these monomers to a value-added product. The fact that ...


Responsive Pentablock Copolymers For Sirna Delivery, Surya K. Mallapragada, Metin Uz, Sacide Alsoy Altinkaya Dec 2017

Responsive Pentablock Copolymers For Sirna Delivery, Surya K. Mallapragada, Metin Uz, Sacide Alsoy Altinkaya

Surya K. Mallapragada

In this study, temperature and pH responsive cationic and amphiphilic pentablock copolymers, which consist of the temperature responsive triblock Pluronic F127 sandwiched between pH responsive PDEAEM (poly(2-diethylaminoethyl methacrylate)) end blocks, were used for the first time in the development of polyplex and gold nanoparticle (AuNP) based multicomponent siRNA delivery systems (MCSs). Copolymers in both systems protected siRNA from external effects, provided cell entry and endosomal escape. The thermoreversible micellization of the hydrophobic PPO block facilitated the cellular entry while the PDEAEM blocks enhanced the endosomal escape through protonated tertiary amine groups by pH buffering. The synergistic advantages of the ...


Characterization Of Sheared Colloidal Aggregation Using Langevin Dynamics Simulation, Sergiy Markutsya, Rodney O. Fox, Shankar Subramaniam Dec 2017

Characterization Of Sheared Colloidal Aggregation Using Langevin Dynamics Simulation, Sergiy Markutsya, Rodney O. Fox, Shankar Subramaniam

Rodney O. Fox

Aggregation of colloidal particles under shear is studied in model systems using a Langevin dynamics model with an improved interparticle interaction potential. In the absence of shear, aggregates that form are characterized by compact structure at small scales and ramified structure at larger scales. This confirms the structural crossover mechanism previously suggested by Sorensen and coworkers, that colloidal aggregation occurs due to monomer addition at small scales and due to cluster-cluster aggregation at large scales. The fractal dimension of nonsheared aggregates is scale-dependent. Smaller aggregates have a higher fractal dimension than larger ones, but the radius of gyration where this ...


Investigation And Engineering Of Polyketide Biosynthetic Pathways, Lei Sun Dec 2017

Investigation And Engineering Of Polyketide Biosynthetic Pathways, Lei Sun

All Graduate Theses and Dissertations

This research is focused on investigation and engineering of natural product biosynthetic pathways for efficient production of pharmaceutically important molecules or generation of new bioactive molecules for drug development.

Natural products are an important source of therapeutics, such as chromomycin (anti-cancer), emodin (anti-inflammatory and anti-tumor) and sprolaxine (anti-Helicobacter pylori). Metabolic engineering of natural product biosynthetic pathways shows its promise for creating and producing valuable compounds with chemical diversity for drug discovery. One goal of this research is to create highly efficient strains to biosynthesize valuable natural products. The engineered Streptomyces roseiscleroticus strain constructed in this work showed higher titers of ...


Gender And Participation In An Engineering Problem-Based Learning Environment, Laura Hirshfield, Milo D. Koretsky Nov 2017

Gender And Participation In An Engineering Problem-Based Learning Environment, Laura Hirshfield, Milo D. Koretsky

Interdisciplinary Journal of Problem-Based Learning

The use of problem-based learning (PBL) is gaining attention in the engineering classroom as a way to help students synthesize foundational knowledge and to better prepare students for practice. In this work, we study the discourse interactions between 27 student teams and two instructors in an engineering PBL environment to analyze how participation is distributed among team members, paying particular attention to the differences between male and female students. There were no statistically significant differences between the amount that male and female students spoke; however, stereotypical gender roles and traditional gendered behavior did manifest in the discussion. Also, regardless of ...


Escherichia Coli Attachment To Model Particulates: The Effects Of Bacterial Cell Characteristics And Particulate Properties, Xiao Liang, Chunyu Liao, Michelle L. Soupir, Laura R. Jarboe, Michael L. Thompson, Philip M. Dixon Sep 2017

Escherichia Coli Attachment To Model Particulates: The Effects Of Bacterial Cell Characteristics And Particulate Properties, Xiao Liang, Chunyu Liao, Michelle L. Soupir, Laura R. Jarboe, Michael L. Thompson, Philip M. Dixon

Chemical and Biological Engineering Publications

E. coli bacteria move in streams freely in a planktonic state or attached to suspended particulates. Attachment is a dynamic process, and the fraction of attached microorganisms is thought to be affected by both bacterial characteristics and particulate properties. In this study, we investigated how the properties of cell surfaces and stream particulates influence attachment. Attachment assays were conducted for 77 E. coli strains and three model particulates (ferrihydrite, Ca-montmorillonite, or corn stover) under environmentally relevant conditions. Surface area, particle size distribution, and total carbon content were determined for each type of particulate. Among the three particulates, attachment fractions to ...


Influence Of Fibroblasts On Functional Arteriogenesis In A Murine Chronic Hindlimb Ischemia Model, Ashli A. Santos Sep 2017

Influence Of Fibroblasts On Functional Arteriogenesis In A Murine Chronic Hindlimb Ischemia Model, Ashli A. Santos

Biomedical Eng/General Eng.

Peripheral arterial occlusive disease (PAOD) occurs when there is a narrowing or blockage – usually a buildup of plaque - within the arteries that reduces blood flow to tissues which can chronic ischemia. As with most diseases, early detection and proactive treatment are important to maximize prognosis. Exercise effectively treats PAOD, but due to ischemic pain in the limbs, or intermittent claudication (IC), exercise can become painful and difficult. Due to the buildup of plaque, occlusions create an ischemic environment that changes the pressure distribution in collateral networks and increases the shear stress in transverse collaterals. Those two responses signal the beginning ...


The Subject Librarian Newsletter, Engineering And Computer Science, Fall 2017, Buenaventura "Ven" Basco Aug 2017

The Subject Librarian Newsletter, Engineering And Computer Science, Fall 2017, Buenaventura "Ven" Basco

Libraries' Newsletters

No abstract provided.


Rice Hull Bioreactor For Recirculating Aquaculture, Marlon A. Greensword Aug 2017

Rice Hull Bioreactor For Recirculating Aquaculture, Marlon A. Greensword

LSU Doctoral Dissertations

The engineering of floating media biofilters has been optimized over the years. The backwashing process has made them more energy and water efficient. Likewise, moving bed bioreactors (MBBR) are gaining interest and popularity because they are relatively affordable to build. Yet, developing countries’ aquaculture production remains largely excluded from the advances made in recirculating aquaculture systems (RAS). This discrepancy is partially driven by the high costs of media such plastic beads and Kaldnes (KMT) media, commonly used in MBBR.

This dissertation evaluates the usability and profitability of rice hulls (RH), an abundant by-product in many developing nations, as a sinking ...


Fundamental Characterization Of Oxygen Nanobubbles, John Hamlin, Yi Wen, Joseph Irudayaraj Aug 2017

Fundamental Characterization Of Oxygen Nanobubbles, John Hamlin, Yi Wen, Joseph Irudayaraj

The Summer Undergraduate Research Fellowship (SURF) Symposium

A hypoxic environment is created by tumors’ incredible growth rate. Hypoxia provides radioresistance to the tumors, thus making radiation treatment less effective. The issue is that increasing the radiation leads to increased side effects in patients. Our goal for the oxygen-filled nanobubble is to deliver oxygen to the tumor to lessen radioresistance and make radiation treatment more efficient. However, we need preliminary research to understand and improve the nanobubbles before further research and implementation. To do this, we synthesized different batches of nanobubbles to optimize the production method and find the best container and temperature to store nanobubbles. We measured ...


The Response Of Schwann Cells To Weak Dc Electric Fields, Alexander T. Lai, Jianming Li Aug 2017

The Response Of Schwann Cells To Weak Dc Electric Fields, Alexander T. Lai, Jianming Li

The Summer Undergraduate Research Fellowship (SURF) Symposium

Schwann cells are glial cells that serve the vital role of supporting neurons in the peripheral nervous system. While their primary function is to provide insulation (myelin) for axons, they also help regenerate injured axons by digesting severed axons and providing scaffolding to guide the regeneration process. This specific role of Schwann cells makes them highly important cellular targets following nerve injury. Although some efforts have been made to encourage Schwann cell migration after nerve damage, the use of electric fields to control cell responses remain unexplored; therefore, this experiment serves to characterize the behavior of Schwann cells to weak ...


Localized Blood Occlusion Generation In An In-Vitro Circulatory Catheter System, Ryan D. Harris, Qi Yang, Hyowon Lee Aug 2017

Localized Blood Occlusion Generation In An In-Vitro Circulatory Catheter System, Ryan D. Harris, Qi Yang, Hyowon Lee

The Summer Undergraduate Research Fellowship (SURF) Symposium

Hydrocephalus is a debilitating neurological disorder that involves the accumulation of cerebrospinal fluid in a ventricle of the brain. The implantation of a catheter commonly treats hydrocephalus with drainage. These catheters have a short lifespan due to obstruction from biological materials. Shunt systems have an extremely high failure rate of more than 40% failed within 1 year and up to 85% failed within 10 years. Previously, polymer-based flexible implantable magnetic micro-actuators were developed to clean up the catheter by mechanical vibration. We have demonstrated clearing of bacteria attachment and are proceeding to examine clearing effects on larger clotting materials, such ...