Open Access. Powered by Scholars. Published by Universities.®

Ultrasound

Discipline
Institution
Publication Year
Publication
Publication Type

Articles 1 - 21 of 21

Full-Text Articles in Bioimaging and Biomedical Optics

Characterizing Intervertebral Disc Strain Under Dynamic Loading Conditions Using Ultrasound Texture Analysis, Radhika Kulkarni Nov 2023

Characterizing Intervertebral Disc Strain Under Dynamic Loading Conditions Using Ultrasound Texture Analysis, Radhika Kulkarni

Discovery Undergraduate Interdisciplinary Research Internship

Herniated discs in the spine are a significant patient burden, with potential links to lower back and leg discomfort and a considerable impact on daily life. These discs, located between spinal vertebrae, are comprised of the annulus fibrosus (AF) and the nucleus pulposus (NP). Herniations happen when the NP protrudes through a full-thickness annular tear, possibly compressing spinal nerves. The mechanical factors underlying herniated discs are poorly understood, necessitating research into these mechanisms and accessible diagnostic techniques. Our study employs high-resolution ultrasound and texture correlation to quantify strain patterns in intervertebral discs during dynamic loading.

A motion segment from the …


A Device For Measuring Acoustic Output Intensity Of Transcranial Doppler Ultrasound Transducers For Comparison With Fda Regulations, Sarah Altman, Gregory Bashford, Benjamin Hage Apr 2023

A Device For Measuring Acoustic Output Intensity Of Transcranial Doppler Ultrasound Transducers For Comparison With Fda Regulations, Sarah Altman, Gregory Bashford, Benjamin Hage

Honors Theses

Transcranial Doppler Ultrasonography (TCD) is a non-invasive methodology which can evaluate cerebral blood flow velocity in real time. Single-element focused circular transducers placed on the scalp produce ultrasound waves capable of penetrating the skull with minimal aberration, enabling measurement of the Doppler shift. As such, TCD can measure blood flow velocity in the internal carotid and vertebral arteries, as well as the arteries of the Circle of Willis: the Anterior Cerebral (ACA), Posterior Cerebral (PCA), and Middle Cerebral Arteries (MCA). Intracranial aneurysm and ischemic stroke are serious conditions in which ballooning or occlusion of cerebral vessels cause insufficient perfusion, leading …


Development Of A Near-Full-View Angle Coverage Photoacoustic Tomography System And Its Application Towards Optical Fluence Distribution Imaging, Lawrence Cm Yip Oct 2022

Development Of A Near-Full-View Angle Coverage Photoacoustic Tomography System And Its Application Towards Optical Fluence Distribution Imaging, Lawrence Cm Yip

Electronic Thesis and Dissertation Repository

Photoacoustic tomography (PAT) is a widely explored hybrid imaging modality combining advantages of ultrasound and optical imaging. However, on the acoustic detection side, limited-view angle coverage and limited-detector bandwidth are common key issues in PAT systems that result in unwanted artifacts. While analytical and simulation studies of limited-view artifacts are extensive, experimental setups capable of comparing limited-view to an ideal full-view case are lacking. Due to the lack of PAT systems capable of artifact-free full-view imaging, applications for such a system have also been left unexplored.

A custom ring-shaped detector array was assembled and mounted to a 6-axis robot, which …


Multimodal Ultrasound Imaging For Improved Metastatic Lymph Node Detection, Sidhartha Jandhyala Jan 2022

Multimodal Ultrasound Imaging For Improved Metastatic Lymph Node Detection, Sidhartha Jandhyala

Dartmouth College Ph.D Dissertations

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide and is complex in nature due to the variety of organs located in the head and neck region. Knowing the metastatic state of the lymph nodes is paramount in accurately staging and treating HNSCC patients. Currently, metastatic lymph node detection involves the use of magnetic resonance imaging and/or x-ray computed tomography, followed by biopsies for histological confirmation. The main diagnostic criteria is the size of the nodes; however, current imaging methods are not 100% accurate due natural lymph node variability. Ultrasound imaging is able to provide …


Phase-Changing Nanodroplets As Nanotheranostic Platform For Combination Cancer Therapy, Catalina-Paula Spatarelu Jan 2022

Phase-Changing Nanodroplets As Nanotheranostic Platform For Combination Cancer Therapy, Catalina-Paula Spatarelu

Dartmouth College Ph.D Dissertations

Cancer is a cluster of diseases, and 1.8 million Americans are newly diagnosed each year. Treatment issues such as drug instability, the occurrence of severe side effects, as well as resistance make the need for solutions to improve conventional methods, like chemotherapy, apparent. Nano-sized drug-delivery platforms, particles loaded with therapeutic molecules that escape the immune system clearance and accumulate at the tumor site, were proposed as one of these solutions. Despite the expansion of the field, several aspects still need to be addressed: inconsistent delivery of the drugs, inability of measuring the effective dose being delivered to the tumor, lack …


A Study Of Acoustically Activated Nanodroplets, Songita Choudhury May 2018

A Study Of Acoustically Activated Nanodroplets, Songita Choudhury

Theses & Dissertations

Current treatment of acute myocardial infarction (AMI), which is the main pathophysiological event leading to death in the United States, has advanced considerably with the introduction of emergent percutaneous interventions, but there remains an urgent need for novel techniques to rapidly and accurately detect infarcted or ischemic tissue that results from AMI. Ultrasound contrast agents, also known as microbubbles (MB), have become commonplace in echocardiography. However, MBs are purely intravascular tracers and unable to cross endothelial barriers due to size. The limitations of MBs, namely size and short circulation times within the human body, led to the development of phase-change …


Computational Ultrasound Elastography: A Feasibility Study, Yu Wang Jan 2017

Computational Ultrasound Elastography: A Feasibility Study, Yu Wang

Dissertations, Master's Theses and Master's Reports

Ultrasound Elastography (UE) is an emerging set of imaging modalities used to assess the biomechanical properties of soft tissues. UE has been applied to numerous clinical applications. Particularly, results from clinical trials of UE in breast lesion differentiation and staging liver fibrosis indicated that there was a lack of confidence in UE measurements or image interpretation. Confidence on UE measurements interpretation is critically important for improving the clinical utility of UE. The primary objective of my thesis is to develop a computational simulation platform based on open-source software packages including Field II, VTK, FEBio and Tetgen. The proposed virtual simulation …


3d Modeling Of Murine Abdominal Aortic Aneurysms: Quantification Of Segmentation And Volumetric Reconstruction, Paula A. Sarmiento, Amelia R. Adelsperger, Craig J. Goergen Ph.D. Aug 2016

3d Modeling Of Murine Abdominal Aortic Aneurysms: Quantification Of Segmentation And Volumetric Reconstruction, Paula A. Sarmiento, Amelia R. Adelsperger, Craig J. Goergen Ph.D.

The Summer Undergraduate Research Fellowship (SURF) Symposium

Abdominal Aortic Aneurysms (AAA) cause 5,900 deaths in the United States each year. Surgical intervention is clinically studied by non-invasive techniques such as computed tomography and magnetic resonance imaging. However, three-dimensional (3D) ultrasound imaging has become an inexpensive alternative and useful tool to characterize aneurysms, allowing for reconstruction of the vessel, quantification of hemodynamics through computational fluid dynamics (CFD) simulation, and possible prediction of aortic expansion and rupture. However, current analysis techniques for these images require the use of multiple software platforms for either modeling or simulation, prompting the need for alternatives to improve data processing. This study monitors the …


Circle Of Willis Model For Transcranial Doppler Ultrasound Training, Conner J. Beyersdorf, Ben Hage, Greg Bashford Apr 2016

Circle Of Willis Model For Transcranial Doppler Ultrasound Training, Conner J. Beyersdorf, Ben Hage, Greg Bashford

UCARE Research Products

Transcranial Doppler (TCD) ultrasound is a technique involving the use of high frequency transmitters to measure intracranial blood flow. The brain is supplied by blood in an arterial anastomosis called the Circle of Willis. Using TCD ultrasound on the circle is difficult and requires practice and teaching. A functional model of the Circle of Willis could prove to be a valuable teaching tool. Through the use of AutoCAD and 3D printing software, an anatomically accurate model was created and set in gelatin phantom inside of a plastic skull. Milk was pumped through the model with a peristaltic pump to simulate …


Analysis Of Breath-Holding Index As An Assessment Of Cerebrovascular Reactivity, Allison P. Porter, Madison Burger, Mohammed Alwatban, Benjamin Hage, Greg Bashford Apr 2016

Analysis Of Breath-Holding Index As An Assessment Of Cerebrovascular Reactivity, Allison P. Porter, Madison Burger, Mohammed Alwatban, Benjamin Hage, Greg Bashford

UCARE Research Products

Cerebrovascular reactivity (CVR) is a key factor in regulating blood flow into the brain, and a marker for vascular disease. If the brain's regulatory system is not working, a patient may be in serious trouble. Testing of CVR is one method of assessing the brain's regulatory capabilities. Transcranial Doppler ultrasound (TCD) is one tool to measure CVR. In this method, carbon dioxide in the blood is transiently increased (such as with the holding of breath), and the resulting blood flow in the brain is measured. In this study, we are going to measure the variability of the breathholding index.

Within …


Robot Assisted Ultrasound Imaged Guided Interstitial Lung Brachytherapy In A Porcine Model, Richard A. Malthaner, Edward Yu, Jerry J. Battista, Chris Blake, Donal Downey, Aaron Fenster Jul 2015

Robot Assisted Ultrasound Imaged Guided Interstitial Lung Brachytherapy In A Porcine Model, Richard A. Malthaner, Edward Yu, Jerry J. Battista, Chris Blake, Donal Downey, Aaron Fenster

Richard A. Malthaner

We set out to see if permanent interstitial brachytherapy seeds could be safely and reproducibly inserted thoracoscopicaly with the ZEUS Robotic system and intraoperative ultrasound into in-vivo porcine lungs.


Robot Assisted Ultrasound Imaged Guided Interstitial Lung Brachytherapy In A Porcine Model, Richard A. Malthaner, Edward Yu, Jerry J. Battista, Chris Blake, Donal Downey, Aaron Fenster Jul 2015

Robot Assisted Ultrasound Imaged Guided Interstitial Lung Brachytherapy In A Porcine Model, Richard A. Malthaner, Edward Yu, Jerry J. Battista, Chris Blake, Donal Downey, Aaron Fenster

Richard A. Malthaner

We set out to see if permanent interstitial brachytherapy seeds could be safely and reproducibly inserted thoracoscopicaly with the ZEUS Robotic system and intraoperative ultrasound into in-vivo porcine lungs.


Real-Time Temperature Imaging Using Ultrasonic Change In Backscattered Energy, Weiyuan Zhao Dec 2014

Real-Time Temperature Imaging Using Ultrasonic Change In Backscattered Energy, Weiyuan Zhao

McKelvey School of Engineering Theses & Dissertations

Thermal therapy from low-temperature cryosurgery to high-temperature ablation of tumors and unwanted electrical pathways has gained increased attention. Temperature imaging (TI) from magnetic resonance studies is the de facto standard for volumetric estimation of temperature. Ultrasound has the advantages of being cheap, portable, non-invasive and non-ionizing. Our group showed in predictions for single scatterers, simulations of scatterer populations and measurements in 1D, 2D and 3D, that CBE changed monotonically with temperature with 1oC accuracy. An obstacle to clinical application of CBE TI is estimation of temperature in real time, which is limited by time for motion compensation (MC). …


In Vivo Flow Measurements Of Murine Renal Arteries And Veins With High Frequency Ultrasound, Amy E. Bogucki, Hilary D. Schroeder, Alexa A. Yrineo, Craig J. Goergen Oct 2013

In Vivo Flow Measurements Of Murine Renal Arteries And Veins With High Frequency Ultrasound, Amy E. Bogucki, Hilary D. Schroeder, Alexa A. Yrineo, Craig J. Goergen

The Summer Undergraduate Research Fellowship (SURF) Symposium

The number of glomeruli in the kidneys has been shown to have an effect on the decline in renal function over time (Brenner, Garcia, Anderson 1988). Furthermore, flow in the renal arteries and veins may depend on the number of glomeruli in the kidney. Consistent in vivo measurements of volumetric flow in the renal arteries and veins are difficult to obtain. Thus, the purpose of this study was to develop non-invasive imaging techniques capable of estimating arterial and venous flow to kidneys. A high-frequency small animal ultrasound system was chosen based upon its excellent spatial and temporal resolution when imaging …


Visualization Of Complex Flow Patterns In Angiotensin Ii-Induced Dissecting Murine Abdominal Aortic Aneurysms With High Frequency Ultrasound, Hilary D. Schroeder, Alexa A. Yrineo, Amy E. Bogucki, Craig J. Goergen Oct 2013

Visualization Of Complex Flow Patterns In Angiotensin Ii-Induced Dissecting Murine Abdominal Aortic Aneurysms With High Frequency Ultrasound, Hilary D. Schroeder, Alexa A. Yrineo, Amy E. Bogucki, Craig J. Goergen

The Summer Undergraduate Research Fellowship (SURF) Symposium

Abdominal aortic aneurysm (AAA) rupture is a common cause of mortality in the United States. Current treatments are only employed once the risk of rupture outweighs the risks associated with surgery. Murine models have been developed to characterize AAA pathogenesis in the hope that new treatments will be developed. For this study, angiotensin II (AngII) was infused subcutaneously into apolipoprotein E-deficient (ApoE-/-) mice using an osmotic mini-pump over 28 days. ApoE-/- mice (16-week-old, 3 females, 2 males) were imaged using a VisualSonics Vevo 2100 high frequency ultrasound before pump implantation and 3, 7, 14, 21, and 27 …


Development Of Non-Invasive In Vivo Ultrasound Imaging Techniques For Elastase-Induced Experimental Abdominal Aortic Aneurysms, Alexa A. Yrineo, Elizabeth A. Nunamaker, Hilary D. Schroeder, Amy E. Bogucki, Craig J. Goergen Oct 2013

Development Of Non-Invasive In Vivo Ultrasound Imaging Techniques For Elastase-Induced Experimental Abdominal Aortic Aneurysms, Alexa A. Yrineo, Elizabeth A. Nunamaker, Hilary D. Schroeder, Amy E. Bogucki, Craig J. Goergen

The Summer Undergraduate Research Fellowship (SURF) Symposium

Abdominal aortic aneurysms (AAAs) are pathological dilations of the aorta which are associated with significant morbidity and mortality. The underlying mechanisms that cause this inflammatory disease are not fully understood and thus, are currently under investigation. In the hopes of preventing disease progression, rodent models that mimic the human condition have been developed to provide insight into the pathogenesis of AAAs. In this study, porcine pancreatic elastase (0.44 U; Sigma-Aldrich) was infused into the infrarenal aortas of male, Sprague Dawley rats to induce aneurysms. To perform the surgery, temporary ligatures were placed around proximal and distal sections of the abdominal …


Biomedical Photoacoustic Imaging Using Gas-Coupled Laser Acoustic Detection, Jami L. Johnson May 2013

Biomedical Photoacoustic Imaging Using Gas-Coupled Laser Acoustic Detection, Jami L. Johnson

Student Research Initiative

Several detection methods have been explored for photoacoustic and ultrasound imaging of biological tissues. Piezoelectric transducers are commonly used, which require contact with the sample and have limiting bandwidth characteristics. Interferometry detection exhibits improved bandwidth characteristics and resolution, yet generally require complicated optics and the incorporation of a contacting reflective medium. Here, we report the use of a noncontact photoacoustic and laser-ultrasound imaging system that does not require the use of a reflective layer. A simple, robust technique known as gas-coupled laser acoustic detection is used, which has previously been applied to composite material evaluation. This technique has the potential …


A Novel Imaging System For Automatic Real-Time 3d Patient-Specific Knee Model Reconstruction Using Ultrasound Rf Data, Rimon Adel Messiha Tadross May 2012

A Novel Imaging System For Automatic Real-Time 3d Patient-Specific Knee Model Reconstruction Using Ultrasound Rf Data, Rimon Adel Messiha Tadross

Doctoral Dissertations

This dissertation introduces a novel imaging method and system for automatic real-time 3D patient-specific knee model reconstruction using ultrasound RF data. The developed method uses ultrasound to transcutaneously digitize a point cloud representing the bone’s surface. This point cloud is then used to reconstruct 3D bone model using deformable models method.

In this work, three systems were developed for 3D knee bone model reconstruction using ultrasound RF data. The first system uses tracked single-element ultrasound transducer, and was experimented on 12 knee phantoms. An average reconstruction accuracy of 0.98 mm was obtained. The second system was developed using an ultrasound …


Ultrasound Transient Shear Wave Elasticity Imaging For Tendon Tissue, Pengfei Song Jun 2010

Ultrasound Transient Shear Wave Elasticity Imaging For Tendon Tissue, Pengfei Song

Department of Agricultural and Biological Systems Engineering: Dissertations, Theses, and Student Research

Degeneration of tendon tissue is a common cause of tendon dysfunction with the symptoms of repeated episodes of pain and palpable increase of tendon thickness. Tendon mechanical properties are directly related to its physiological composition and the structural organization of the interior collagen fibers which could be altered by tendon degeneration due to overuse or injury. Thus, measuring mechanical properties of tendon tissue may represent a quantitative measurement of pain, reduced function, and tissue health. Ultrasound elasticity imaging has been developed in the last two decades and has proved to be a promising tool for tissue elasticity imaging. To date, …


Robot Assisted Ultrasound Imaged Guided Interstitial Lung Brachytherapy In A Porcine Model, Richard A. Malthaner, Edward Yu, Jerry J. Battista, Chris Blake, Donal Downey, Aaron Fenster Nov 2009

Robot Assisted Ultrasound Imaged Guided Interstitial Lung Brachytherapy In A Porcine Model, Richard A. Malthaner, Edward Yu, Jerry J. Battista, Chris Blake, Donal Downey, Aaron Fenster

Edward Yu

We set out to see if permanent interstitial brachytherapy seeds could be safely and reproducibly inserted thoracoscopicaly with the ZEUS Robotic system and intraoperative ultrasound into in-vivo porcine lungs.


Robot Assisted Ultrasound Imaged Guided Interstitial Lung Brachytherapy In A Porcine Model, Richard A. Malthaner, Edward Yu, Jerry J. Battista, Chris Blake, Donal Downey, Aaron Fenster Jan 2005

Robot Assisted Ultrasound Imaged Guided Interstitial Lung Brachytherapy In A Porcine Model, Richard A. Malthaner, Edward Yu, Jerry J. Battista, Chris Blake, Donal Downey, Aaron Fenster

Oncology Presentations

We set out to see if permanent interstitial brachytherapy seeds could be safely and reproducibly inserted thoracoscopicaly with the ZEUS Robotic system and intraoperative ultrasound into in-vivo porcine lungs.