Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biomedical Engineering and Bioengineering

Preparing Homogenous Composites Of Collagen And Cellulose Nanocrystals For Tissue Engineering Research, Zachary Stanley May 2023

Preparing Homogenous Composites Of Collagen And Cellulose Nanocrystals For Tissue Engineering Research, Zachary Stanley

Biological and Agricultural Engineering Undergraduate Honors Theses

Advancements in medicine and our understanding of stem cells have led to a greater emphasis on further developing research focused on tissue engineering. This research has led to the rise of both two-dimensional and three-dimensional scaffolds that can be utilized to repair bone, skin, vascular, and potentially even nervous tissue. One of the prominent compounds used in modern scaffolds is collagen-based hydrogels due to their low antigenicity and ability to provide structure to cells. There is potential to further improve upon this three-dimensional scaffold by incorporating cellulose nanocrystals (CNCs) into a composite hydrogel with collagen. The addition would increase the …


Bone And Cartilage Compression Simulator, Karoline M. Wucherer, Benjamin A. Parmentier, Thomasina E. Hinkle Mar 2022

Bone And Cartilage Compression Simulator, Karoline M. Wucherer, Benjamin A. Parmentier, Thomasina E. Hinkle

Biomedical Engineering

A device was developed that delivers mechanical loads to bone and soft tissue samples under physiological conditions to aid in the research of tissue engineering bone and cartilage. To begin the design process, a Network Diagram and Gantt Chart were produced to create a general timeline for the project to follow. This allowed us to measure our progress and determine what effects (if any) delays could have on our project.


Developing Aligned Nerve Scaffolds In A 3d Type-I Collagen Gel, Gabriel David May 2021

Developing Aligned Nerve Scaffolds In A 3d Type-I Collagen Gel, Gabriel David

Biomedical Engineering Undergraduate Honors Theses

Despite significant progress in the field of peripheral nerve repair, clinical success is still limited, leaving millions to suffer from peripheral neuropathy with billions spent every year for treatment. Nerve repair methods that are capable of maximizing the regenerative properties of peripheral nerves are greatly desired in the field of medical science. This research aims to fill the gap between modern methods and the future of nerve repair by creating type-I collagen scaffolds with aligned degradation pores that will assist and nurture nerves growing through them. This is achieved by incorporating adipose stem cells into type-I collagen hydrogels and aligning …


Fluid Delivery System For A Cell Culture On A Microfluidic Chip, Austin J. Roeder, Colleen A. Richards, Emily A. Matteson Mar 2019

Fluid Delivery System For A Cell Culture On A Microfluidic Chip, Austin J. Roeder, Colleen A. Richards, Emily A. Matteson

Biomedical Engineering

This project report provides a description of the progress made in the development of a fluid delivery system for a microfluidic cell culture on a chip. The system is intended to be used in a humidified incubator in a university laboratory and the fluid delivery system is required to exist and operate within that incubator for extended periods of time. Therefore, the system will be gravity-driven and contain no electronic components. The key specification of the system is to provide fluid flow at a constant velocity.

After manufacturing and testing the device, all specifications were met except for the fluid …


Alginate Hydrogels As Three-Dimensional Scaffolds For In Vitro Culture Models Of Growth Plate Cartilage Development And Porcine Embryo Elongation, Taylor D. Laughlin Jul 2016

Alginate Hydrogels As Three-Dimensional Scaffolds For In Vitro Culture Models Of Growth Plate Cartilage Development And Porcine Embryo Elongation, Taylor D. Laughlin

Department of Agricultural and Biological Systems Engineering: Dissertations, Theses, and Student Research

The establishment of in vitro culture models utilizes tissue engineering principles to design functional mimics of in vivo environments in vitro. Advantages for the use of in vitro culture models include ethical alleviation of animal models for therapeutic testing, cost efficiency, and a greater ability to study specific mechanisms via a systematic, ground-up approach to development. In this thesis, alginate hydrogels are utilized in the development of in vitro culture models of porcine embryo elongation and growth plate cartilage development. First, the effect of scaffold and modifications to the scaffold were explored in both projects. In order to modulate …


Polysaccharide-Based Shear Thinning Hydrogels For Three-Dimensional Cell Culture, Vasudha Surampudi Jan 2015

Polysaccharide-Based Shear Thinning Hydrogels For Three-Dimensional Cell Culture, Vasudha Surampudi

Theses and Dissertations

The recreation of the complicated tissue microenvironment is essential to reduce the gap between in vitro and in vivo research. Polysaccharide-based hydrogels form excellent scaffolds to allow for three-dimensional cell culture owing to the favorable properties such as capability to absorb large amount of water when immersed in biological fluids, ability to form “smart hydrogels” by being shear-thinning and thixotropic, and eliciting minimum immunological response from the host. In this study, the biodegradable shear-thinning polysaccharide, gellan-gum based hydrogel was investigated for the conditions and concentrations in which it can be applied for the adhesion, propagation and assembly of different mammalian …