Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Load-Relaxation Properties Of The Human Trunk In Response To Prolonged Flexion: Measuring And Modeling The Effect Of Flexion Angle, Nima Toosizadeh, Maury A. Nussbaum, Babak Bazrgari, Michael L. Madigan Nov 2012

Load-Relaxation Properties Of The Human Trunk In Response To Prolonged Flexion: Measuring And Modeling The Effect Of Flexion Angle, Nima Toosizadeh, Maury A. Nussbaum, Babak Bazrgari, Michael L. Madigan

Biomedical Engineering Faculty Publications

Experimental studies suggest that prolonged trunk flexion reduces passive support of the spine. To understand alterations of the synergy between active and passive tissues following such loadings, several studies have assessed the time-dependent behavior of passive tissues including those within spinal motion segments and muscles. Yet, there remain limitations regarding load-relaxation of the lumbar spine in response to flexion exposures and the influence of different flexion angles. Ten healthy participants were exposed for 16 min to each of five magnitudes of lumbar flexion specified relative to individual flexion-relaxation angles (i.e., 30, 40, 60, 80, and 100%), during which lumbar flexion …


Towards Omni-Tomography -- Grand Fusion Of Multiple Modalities For Simultaneous Interior Tomography, Ge Wang, Jie Zhang, Hao Gao, Victor Weir, Hengyong Yu, Wenxiang Cong, Xiaochen Xu, Haiou Shen, James Bennett, Mark Furth, Yue Wang, Michael Vannier Jun 2012

Towards Omni-Tomography -- Grand Fusion Of Multiple Modalities For Simultaneous Interior Tomography, Ge Wang, Jie Zhang, Hao Gao, Victor Weir, Hengyong Yu, Wenxiang Cong, Xiaochen Xu, Haiou Shen, James Bennett, Mark Furth, Yue Wang, Michael Vannier

Radiology Faculty Publications

We recently elevated interior tomography from its origin in computed tomography (CT) to a general tomographic principle, and proved its validity for other tomographic modalities including SPECT, MRI, and others. Here we propose "omni-tomography", a novel concept for the grand fusion of multiple tomographic modalities for simultaneous data acquisition in a region of interest (ROI). Omni-tomography can be instrumental when physiological processes under investigation are multi-dimensional, multi-scale, multi-temporal and multi-parametric. Both preclinical and clinical studies now depend on in vivo tomography, often requiring separate evaluations by different imaging modalities. Over the past decade, two approaches have been used for multimodality …