Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Gait

Theses/Dissertations

Discipline
Institution
Publication Year
Publication

Articles 1 - 29 of 29

Full-Text Articles in Biomedical Engineering and Bioengineering

Enhancing Human Key Point Identification: A Comparative Study Of High-Resolution Vicon Dataset And Coco Dataset Using Bpnet, Bibash Lama Aug 2023

Enhancing Human Key Point Identification: A Comparative Study Of High-Resolution Vicon Dataset And Coco Dataset Using Bpnet, Bibash Lama

Masters Theses

Accurately identifying human key points is crucial for various applications, including activity recognition, pose estimation, and gait analysis. This study presents a high-resolution dataset created using the VICON motion capture system and three differently oriented 2D cameras, that can be used to train different neural networks for estimating the 2D key joint positions of the person from the 2D images or videos. The participants in the study included 25 healthy adults (17 males and 8 females) performing normal gait movements for about 2 to 3 seconds. The VICON system captured 3D ground truth data, while the three 2D cameras collected …


Subject-Specific Human Knee Fea Models For Transtibial Amputees Vs Control Tibial Cartilage Pressure In Gait, Cycling And Elliptical Training, Ali Yazdkhasti Aug 2023

Subject-Specific Human Knee Fea Models For Transtibial Amputees Vs Control Tibial Cartilage Pressure In Gait, Cycling And Elliptical Training, Ali Yazdkhasti

Master's Theses

Millions of individuals around the globe are impacted by osteoarthritis, which is the prevailing type of arthritis. This condition arises as a result of gradual deterioration of the protective cartilage that safeguards the ends of the bones. This is especially true of transtibial amputees, who have a significantly higher incidence of osteoarthritis of the knee in their intact limb than non-amputees. Engaging in regular physical activity, managing weight effectively, and undergoing specific treatments can potentially slow down the advancement of the disease and enhance pain relief and joint function. Nevertheless, the relationship between the type of exercise and its impact …


Validation Of Meta Motion Imu Sensors Through Measurement Of Knee Angles During Gait, Kerri Caruso May 2023

Validation Of Meta Motion Imu Sensors Through Measurement Of Knee Angles During Gait, Kerri Caruso

Biomedical Engineering Theses & Dissertations

The implementation of inertial measurement units (IMU) in the biomechanical field has become increasingly popular due to their robustness, simplicity, accuracy, and the ability to move research out of a lab and into the real world. In this study, the MetaMotion IMU sensors are assessed for validity against a dynamometer and the Vicon motion capture system. Both systems have proven their measuring accuracies in the biomechanics world and are used as the truth source for this validation study. In the first part of this study, the sensors are assessed for various common sensor errors. Individual sensor components of the IMU, …


Effect Of Dorsal Quadrant Or Ventral Quadrant Spinal Cord Injury On Gait Features During Locomotion., Anya Nicole Trell Aug 2022

Effect Of Dorsal Quadrant Or Ventral Quadrant Spinal Cord Injury On Gait Features During Locomotion., Anya Nicole Trell

Electronic Theses and Dissertations

In the Unites States, approximately 1.5 million people currently have a spinal cord injury and suffer permanent sensory and motor loss due to the disruption of the spinal cord. Due to the significant morbidity, it is vital to understand the functional impact of disrupting neural descending pathways that modulate spinal neurons involved in intermuscular coordination critical for gait behaviors. Tasks that are more difficult require additional input from these neural pathways; therefore, fourteen feline subjects were familiarized with level overground locomotion and stair descent gait tasks. After collection of baseline kinematic data, the subjects received either a dorsal or ventral …


Electromechanical Fatigue Properties Of Dielectric Elastomer Stretch Sensors Under Orthopaedic Loading Conditions, Andrea Karen Persons May 2022

Electromechanical Fatigue Properties Of Dielectric Elastomer Stretch Sensors Under Orthopaedic Loading Conditions, Andrea Karen Persons

Theses and Dissertations

Fatigue testing of stretch sensors often focuses on high amplitude, low-cycle fatigue (LCF) behavior; however, when used for orthopaedic, athletic, or ergonomic assessments, stretch sensors are subjected to low amplitude, high-cycle fatigue (HCF) conditions. As an added layer of complexity, the fatigue testing of stretch sensors is not only focused on the life of the material comprising the sensor, but also on the reliability of the signal produced during the extension and relaxation of the sensor. Research into the development of a smart sock that can be used to measure the range of motion (ROM) of the ankle joint during …


Development And Application Of 3d Kinematic Methodologies For Biomechanical Modelling In Adaptive Sports And Rehabilitation, Anne Marie Severyn May 2022

Development And Application Of 3d Kinematic Methodologies For Biomechanical Modelling In Adaptive Sports And Rehabilitation, Anne Marie Severyn

All Dissertations

Biomechanical analysis is widely used to assess human movement sciences, specifically using three-dimensional motion capture modelling. There are unprecedented opportunities to increase quantitative knowledge of rehabilitation and recreation for disadvantaged population groups. Specifically, 3D models and movement profiles for human gait analysis were generated with emphasis on post-stroke patients, with direct model translation to analyze equivalent measurements while horseback riding in use of the alternative form of rehabilitation, equine assisted activities and therapies (EAAT) or hippotherapy (HPOT). Significant improvements in gait symmetry and velocity were found within an inpatient rehabilitation setting for patients following a stroke, and the developed movement …


Full-Body Biomechanical Characterization Of Children With Hypermobile Ehlers-Danlos Syndrome During Gait And Activities Of Daily Living, Anahita Alahmoradiqashqai May 2022

Full-Body Biomechanical Characterization Of Children With Hypermobile Ehlers-Danlos Syndrome During Gait And Activities Of Daily Living, Anahita Alahmoradiqashqai

Theses and Dissertations

Hypermobile Ehlers-Danlos syndrome (hEDS) is an inherited connective tissue disorder, often under-diagnosed, and presenting with frequent chronic pain and severe musculoskeletal symptoms that can drastically reduce the quality of life during one’s life span. While there are limited quantitative approaches in the literature on adult movements, the biomechanics of movements during activities of daily living (ADLs) in children have not been investigated comprehensively. Therefore, the primary purpose of this dissertation was to characterize the biomechanics of the musculoskeletal system and investigate the biomechanics of hEDS by quantifying joint dynamics and muscle activations during ADLs and gait in the pediatric population. …


Characterizing Locomotor Disturbance Perception In Young Adults, Daniel James Liss Jan 2022

Characterizing Locomotor Disturbance Perception In Young Adults, Daniel James Liss

Graduate Theses, Dissertations, and Problem Reports

Falls during walking are a leading cause of injuries across aging. Many of these falls are due to slips and trips. The ability to perceive disturbances to ongoing motion may play an important role in the control of walking balance. However, disturbance perception has been investigated in standing balance, but its role in walking balance due to slip- and trip-like disturbances remains largely unknown. Characterizing locomotor disturbance perception in young adults may lead to a more comprehensive understanding of sensorimotor walking balance control.

This work defined locomotor disturbance perception in response to slip and trip-like disturbances in young adults. We …


Musculoskeletal Adaptation Of Young And Older Adults In Response To Environmental, Physical, And Cognitive Conditions, Amy E. Holcomb Aug 2021

Musculoskeletal Adaptation Of Young And Older Adults In Response To Environmental, Physical, And Cognitive Conditions, Amy E. Holcomb

Boise State University Theses and Dissertations

Accidental falls present a large functional and financial burden among people aged 65 years and older. Falls, injuries associated with falls, and the fear of falling decrease quality of life, physical function, and independence for older adults. To prevent falls, improve stability, and protect joints from damage or injury, the typical response to "challenging" conditions include cautious gait, increase muscle co-contraction, and decreased range of motion. These compensatory strategies are more pronounced in the older adult population with apprehensive "cautious" gait at slower speeds, decreased knee flexion, and increased muscle activation around the knee and ankle. The underlying mechanisms and …


Motor Control-Based Assessment Of Therapy Effects In Individuals Post-Stroke: Implications For Prediction Of Response And Subject-Specific Modifications, Ashley Rice May 2021

Motor Control-Based Assessment Of Therapy Effects In Individuals Post-Stroke: Implications For Prediction Of Response And Subject-Specific Modifications, Ashley Rice

Doctoral Dissertations

Producing a coordinated motion such as walking is, at its root, the result of healthy communication pathways between the central nervous system and the musculoskeletal system. The central nervous system produces an electrical signal responsible for the excitation of a muscle, and the musculoskeletal system contains the necessary equipment for producing a movement-driving force to achieve a desired motion. Motor control refers to the ability an individual has to produce a desired motion, and the complexity of motor control is a mathematical concept stemming from how the electrical signals from the central nervous system translate to muscle activations. Exercising a …


Feasibility Study To Measure The Impact Of A Specialized Core Exercise On Metabolic Efficiency And Stability During Walking For Above Knee Amputees, Shaye M. Tiell, Sabrina R. Segretario, Serena M. Myers, Emily G. Tully Jan 2021

Feasibility Study To Measure The Impact Of A Specialized Core Exercise On Metabolic Efficiency And Stability During Walking For Above Knee Amputees, Shaye M. Tiell, Sabrina R. Segretario, Serena M. Myers, Emily G. Tully

Williams Honors College, Honors Research Projects

The objective of this study is to determine the feasibility of improving the gait of above-knee (AK) amputees by performing daily core exercises aimed to provide an efficient and stable walking pattern. The goal of the exercise is to strengthen core muscles and form temporary neural connections in the brain aimed at improving metabolic efficiency and stability. We will be implementing the Wright Balance Core 360 Exercise Technique for completion by our subjects. Motion capture technology will be utilized in conjunction with a metabolic oxygen consumption analyzer to collect stability and metabolic efficiency data while amputees walk on a treadmill. …


Design Of Prototype Prosthesis For A Canine With A Right Front Limb Deformity As An Alternate Approach To Stabilize Gait And Withstand Gait Forces, Tayler R. Kastlunger Jun 2020

Design Of Prototype Prosthesis For A Canine With A Right Front Limb Deformity As An Alternate Approach To Stabilize Gait And Withstand Gait Forces, Tayler R. Kastlunger

Master's Theses

Congenital and developmental limb deformities in canines are rare and can occur as a genetic disorder or be caused by extrinsic factors. Without surgery to correct the deformity, conservative management can be implemented to manage exercise and restrict high-intensity activity of the canine. However, any alteration to the normal gait and locomotive biomechanics of a canine can have significant long-term effects on the musculoskeletal health and quality of life of the canine. To improve quality of life and provide an alternative and more cost-effective approach to surgery, a custom prosthetic was designed and developed for a canine born with a …


Heel Down And Toe-Off Time Measured With Ultrasonic Doppler System And Force Plate Sensor, Sabin Timsina May 2020

Heel Down And Toe-Off Time Measured With Ultrasonic Doppler System And Force Plate Sensor, Sabin Timsina

Honors Theses

Collie Box is a medical device that measures the gait parameters of the person walk- ing in front of it. This device uses the Ultrasonic Doppler system to extract the heel-contact and toe-off times of a person walking within the range of 2-10 meters. These times are used to determine the leg’s swing phase and double stance times. The ultrasonic transducer of 10mm diameter is driven at 40kHz. At the time of the heel-contact and toe-off, foot velocity is zero while the torso part of the human body is still in motion. The wide directivity of 10mm diameter ultrasonic transducer …


Knee Joint Loading Following Anterior Cruciate Ligament Reconstruction: Link To Patient Reported Outcomes And A Novel Method To Monitor With Wearable Sensors, Alex Spencer Jan 2020

Knee Joint Loading Following Anterior Cruciate Ligament Reconstruction: Link To Patient Reported Outcomes And A Novel Method To Monitor With Wearable Sensors, Alex Spencer

Theses and Dissertations--Kinesiology and Health Promotion

Recovery from anterior cruciate ligament reconstruction (ACLR) commonly results in undesirable physical and patient-reported outcomes (PROs). Identification of modifiable factors such as knee contact force (KCF) early in rehabilitation that can improve these outcomes is important due to the rapid decrease in function, quality of life, and joint health in this population. Additionally, if noninvasive measurement of KCFs outside of a traditional laboratory were possible, clinicians could optimize patient treatment with personalized care. Therefore, there are two primary aims to this thesis: 1) quantify the link between KCF and PROs which measure pain, ability to perform activities of daily living, …


Predictive Simulation Of Human Movement And Applications To Assistive Device Design And Control, Vinh Nguyen Nov 2019

Predictive Simulation Of Human Movement And Applications To Assistive Device Design And Control, Vinh Nguyen

Doctoral Dissertations

Predictive simulation based on dynamic optimization using musculoskeletal models is a powerful approach for studying biomechanics of human gait. Predictive simulation can be used for a variety of applications from designing assistive devices to testing theories of motor controls. However, one of the challenges in formulating the predictive dynamic optimization problem is that the cost function, which represents the underlying goal of the walking task (e.g., minimal energy consumption) is generally unknown and is assumed a priori. While different studies used different cost functions, the qualities of the gaits with those cost functions were often not provided. Therefore, this dissertation …


Walking For Object Transport: An Examination Of The Coordinative Adaptations To Locomotor, Perceptual, And Manual Task Constraints, Avelino Amado Jul 2019

Walking For Object Transport: An Examination Of The Coordinative Adaptations To Locomotor, Perceptual, And Manual Task Constraints, Avelino Amado

Doctoral Dissertations

The goal of this dissertation was to understand how the intrinsic dynamics of gait adapt to support the performance of an ecologically relevant object transport task. A common object transport task is walking with a cup of water. Because the water can move relatively independent of the cup, the cup and water system is classified as a complex object. To model this task participants carried a cup with a wooden lid placed on top. On the lid there was a circular region with the same circumference as the cup and a ball. The object of the task was to keep …


Hip And Knee Biomechanics For Transtibial Amputees In Gait, Cycling, And Elliptical Training, Greg Orekhov Dec 2018

Hip And Knee Biomechanics For Transtibial Amputees In Gait, Cycling, And Elliptical Training, Greg Orekhov

Master's Theses

Transtibial amputees are at increased risk of contralateral hip and knee joint osteoarthritis, likely due to abnormal biomechanics. Biomechanical challenges exist for transtibial amputees in gait and cycling; particularly, asymmetry in ground/pedal reaction forces and joint kinetics is well documented and state-of-the-art passive and powered prostheses do not fully restore natural biomechanics. Elliptical training has not been studied as a potential exercise for rehabilitation, nor have any studies been published that compare joint kinematics and kinetics and ground/pedal reaction forces for the same group of transtibial amputees in gait, cycling, and elliptical training. The hypothesis was that hip and knee …


Inverse Dynamic Analysis Of Acl Reconstructed Knee Joint Biomechanics During Gait And Cycling Using Opensim, Megan V. Pottinger Aug 2018

Inverse Dynamic Analysis Of Acl Reconstructed Knee Joint Biomechanics During Gait And Cycling Using Opensim, Megan V. Pottinger

Master's Theses

ACL (anterior cruciate ligament) injuries of the knee joint alter biomechanics and may cause abnormal loading conditions that place patients at a higher risk of developing osteoarthritis (OA). There are multiple types of ACL reconstruction (ACLR), but all types aim to restore anterior tibial translation and internal tibial rotation following surgery. Analyzing knee joint contact loads provide insight into the loading conditions following ACLR that may contribute to the long-term development of OA. Ten ACLR subjects, who underwent the same reconstruction, performed gait and cycling experiments while kinematic and kinetic data were collected. Inverse dynamic analyses were performed on processed …


Predictive Simulations Of Gait And Their Application In Prosthesis Design, Anne D. Koelewijin Jan 2018

Predictive Simulations Of Gait And Their Application In Prosthesis Design, Anne D. Koelewijin

ETD Archive

Predictive simulations predict human gait by solving a trajectory optimization problem by minimizing energy expenditure. These simulations could predict the effect of a prosthesis on gait before its use. This dissertation has four aims, to show the application of predictive simulations in prosthesis design and to improve the quality of predictive simulations. Aim 1 was to explain joint moment asymmetry in the knee and hip in gait of persons with a transtibial amputation (TTA gait). Predictive simulations showed that an asymmetric gait required less effort. However, a small effort increase yielded a gait with increased joint moment symmetry and reduced …


Altering A Runner’S Foot Strike Using A Modified Elliptical Trainer, Daniel Shull Jan 2017

Altering A Runner’S Foot Strike Using A Modified Elliptical Trainer, Daniel Shull

Theses and Dissertations

One possible solution to common running related injuries is to transition runners from a rearfoot strike during initial contact to a midfoot strike. Natural rearfoot strike runners were studied to see if a modified elliptical trainer could be used to alter their running pattern to that of a midfoot strike runner. Their results were compared to subjects who ran on a non-modified elliptical trainer. After training on the modified elliptical trainer, subjects demonstrated a decrease in foot angle at initial contact when attempting to run with a midfoot strike. Training did not affect all kinetic metrics or stride frequency. However, …


The Effects Of Obesity On Resultant Knee Joint Loads For Gait And Cycling, Juan Gutierrez-Franco Jun 2016

The Effects Of Obesity On Resultant Knee Joint Loads For Gait And Cycling, Juan Gutierrez-Franco

Master's Theses

Osteoarthritis (OA) is a degenerative disease of cartilage and bone tissue and the most common form of arthritis, accounting for US$ 10.5 billion in hospital charges in 2006. Obesity (OB) has been linked to increased risk of developing knee OA due to increased knee joint loads and varus-valgus misalignment. Walking is recommended as a weight-loss activity but it may increase risk of knee OA as OB gait increases knee loads. Cycling has been proposed as an alternative weight-loss measure, however, lack of studies comparing normal weight (NW) and OB subjects in cycling and gait hinder identification of exercises that may …


An Investigation Of Kinetic Visual Biofeedback On Dynamic Stance Symmetry, Trisha J. Massenzo Jan 2016

An Investigation Of Kinetic Visual Biofeedback On Dynamic Stance Symmetry, Trisha J. Massenzo

Theses and Dissertations

The intent of the following research is to utilize task-specific, constraint-induced therapies and apply towards dynamic training for symmetrical balance. Modifications to an elliptical trainer were made to both measure weight distributions during dynamic stance as well as provide kinetic biofeedback through a man-machine interface. Following a review of the background, which includes research from several decades that are seminal to current studies, a design review is discussed to cover the design of the modified elliptical (Chapter 2).

An initial study was conducted in a healthy sample population in order to determine the best visual biofeedback representation by comparing different …


Lpcoms: Towards A Low Power Wireless Smart-Shoe System For Gait Analysis In People With Disabilities, Ishmat Zerin Oct 2015

Lpcoms: Towards A Low Power Wireless Smart-Shoe System For Gait Analysis In People With Disabilities, Ishmat Zerin

Master's Theses (2009 -)

Gait analysis using smart sensor technology is an important medical diagnostic process and has many applications in rehabilitation, therapy and exercise training. In this thesis, we present a low power wireless smart-shoe system (LPcomS) to analyze different functional postures and characteristics of gait while walking. We have designed and implemented a smart-shoe with a Bluetooth communication module to unobtrusively collect data using smartphone in any environment. With the design of a shoe insole equipped with four pressure sensors, the foot pressure is been collected, and those data are used to obtain accurate gait pattern of a patient. With our proposed …


Biplanar Fluoroscopic Analysis Of In Vivo Hindfoot Kinematics During Ambulation, Janelle Ann Cross Jul 2015

Biplanar Fluoroscopic Analysis Of In Vivo Hindfoot Kinematics During Ambulation, Janelle Ann Cross

Dissertations (1934 -)

The overall goal of this project was to develop and validate a biplanar fluoroscopic system and integrated software to assess hindfoot kinematics. Understanding the motion of the foot and ankle joints may lead to improved treatment methods in persons with foot and ankle pathologies. During gait analysis, skin markers are placed on the lower extremities, which are defined as four rigid-body segments with three joints representing the hip, knee and ankle. This method introduces gross assumptions on the foot and severely limits the analysis of in depth foot mechanics. Multi-segmental models have been developed, but are susceptible to skin motion …


Dynamic Balance Control During Treadmill Walking In Chronic Stroke Survivors, Eric Richard Walker Oct 2013

Dynamic Balance Control During Treadmill Walking In Chronic Stroke Survivors, Eric Richard Walker

Dissertations (1934 -)

Maintaining dynamic balance is an important component of walking function that is likely impaired in chronic stroke survivors, evidenced by an increased prevalence of falls. Dynamic balance control requires maintaining the center of mass (COM) within the base of support during movement. During walking, dynamic balance control is achieved largely by modifying foot placement to adjust the base of support. However, chronic stroke survivors have difficulty with both precision control of foot placement, as well as reduced control of COM movement. The objective of this dissertation was to characterize dynamic balance control strategies during walking in chronic stroke survivors. Additionally, …


Induced Damping And Its Relationship To Beneficial Energy Harvesting In Dielectric Elastomers With Application To Walking, Heather L. Lai Jan 2013

Induced Damping And Its Relationship To Beneficial Energy Harvesting In Dielectric Elastomers With Application To Walking, Heather L. Lai

Wayne State University Dissertations

This dissertation presents a novel, interdisciplinary research which addresses the potential of applying soft polymeric materials to strategically harvest biomechanical energy in a beneficial manner for use as a viable, low power source for on-board electronics. Of particular interest are electroactive polymers (EAP), which unlike other types of electromechanical smart materials such as piezoelectric ceramics, which are often brittle, have low elastic modulus and can exhibit large strains without substantial stress generations. One type of EAP, the dielectric elastomer (DE), which utilizes electrostatic forces built up across the dielectric polymer to convert between electrical and mechanical energy, is employed in …


Comparison Of An Ankle-Foot-Orthosis And Neuroprosthesis During Level And Non-Level Walking For Individuals Post-Stroke, Michelle Beverly Gallagher Oct 2011

Comparison Of An Ankle-Foot-Orthosis And Neuroprosthesis During Level And Non-Level Walking For Individuals Post-Stroke, Michelle Beverly Gallagher

Master's Theses (2009 -)

This study used gait analysis to compare the efficacy of the two foot drop treatments (ankle-foot-orthosis and neuroprosthesis) and to contrast the stimulation control of the two different neuroprosthesis sensors during level and non-level ambulation of post-stroke individuals.

Eight subjects completed two gait analysis sessions, once while using a study-provided articulated AFO and the other while using a WalkAide. After four weeks of acclimation to the device, each subject performed two minute walking trials on a level, inclined and declined treadmill. Kinematic and heart rate data were collected for all sessions. Plantar pressure and WalkAide tilt, heel loading, and stimulation …


Upper Extremity Kinetics During Lofstrand Crutch-Assisted Gait In Children, Neha Bhagchandani Apr 2010

Upper Extremity Kinetics During Lofstrand Crutch-Assisted Gait In Children, Neha Bhagchandani

Master's Theses (2009 -)

Complete biomechanical analysis helps evaluate the motion during various gait patterns for the upper and lower extremities. Extensive studies have been performed to evaluate unassisted gait patterns, but very little has been accomplished for studying assisted motion. Children with pathologies such as osteogenesis imperfecta, spinal cord injury, and cerebral palsy use assistive devices such as anterior and posterior walkers, canes, Lofstrand and axillary crutches for ambulation purposes.

Statistics show that there are currently about 566,000 crutch users in the United States. The long-term crutch users in this population can suffer various upper limb pathologies associated with extensive upper extremity (UE) …


An Investigation Of Position And Force During Gait-Mimicking Finger Motions, Matthew Stephen Noesner May 2004

An Investigation Of Position And Force During Gait-Mimicking Finger Motions, Matthew Stephen Noesner

Theses

Spinal cord injuries are extremely debilitating, often leaving the injured person without the ability to use their legs (paraplegia) and sometimes, without the ability to use their arms and legs (tetraplegia or quadriplegia). Currently, primitive forms of feed-forward functional electrical stimulation (FES) and special orthotics are available for persons with paraplegia. However, these forms of FES do not allow the individual to actually control their movements on a real-time basis, nor do they offer the ability for the injured person to sense the ground on which they stand.

It is the goal of the researchers at the Neuromuscular Engineering Laboratory, …