Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biomedical Engineering and Bioengineering

Mechanical Properties And Morphological Alterations In Fiber-Based Scaffolds Affecting Tissue Engineering Outcomes, James Dolgin, Samerender Nagam Hanumantharao, Stephen Farias, Carl G. Simon, Smitha Rao Apr 2023

Mechanical Properties And Morphological Alterations In Fiber-Based Scaffolds Affecting Tissue Engineering Outcomes, James Dolgin, Samerender Nagam Hanumantharao, Stephen Farias, Carl G. Simon, Smitha Rao

Michigan Tech Publications

Electrospinning is a versatile tool used to produce highly customizable nonwoven nanofiber mats of various fiber diameters, pore sizes, and alignment. It is possible to create electrospun mats from synthetic polymers, biobased polymers, and combinations thereof. The post-processing of the end products can occur in many ways, such as cross-linking, enzyme linking, and thermal curing, to achieve enhanced chemical and physical properties. Such multi-factor tunability is very promising in applications such as tissue engineering, 3D organs/organoids, and cell differentiation. While the established methods involve the use of soluble small molecules, growth factors, stereolithography, and micro-patterning, electrospinning involves an inexpensive, labor …


An Assessment Of Blood Vessel Remodeling Of Nanofibrous Poly(Ε-Caprolactone) Vascular Grafts In A Rat Animal Model, Jana Horakova, Tereza Blassova, Zbynek Tonar, Connor Mccarthy, Katerina Strnadova, David Lukas, Petr Mikes, Patrick Bowen, Roger J. Guillory Ii, Megan C. Frost, Jeremy Goldman Feb 2023

An Assessment Of Blood Vessel Remodeling Of Nanofibrous Poly(Ε-Caprolactone) Vascular Grafts In A Rat Animal Model, Jana Horakova, Tereza Blassova, Zbynek Tonar, Connor Mccarthy, Katerina Strnadova, David Lukas, Petr Mikes, Patrick Bowen, Roger J. Guillory Ii, Megan C. Frost, Jeremy Goldman

Michigan Tech Publications

The development of an ideal vascular prosthesis represents an important challenge in terms of the treatment of cardiovascular diseases with respect to which new materials are being considered that have produced promising results following testing in animal models. This study focuses on nanofibrous polycaprolactone-based grafts assessed by means of histological techniques 10 days and 6 months following suturing as a replacement for the rat aorta. A novel stereological approach for the assessment of cellular distribution within the graft thickness was developed. The cellularization of the thickness of the graft was found to be homogeneous after 10 days and to have …


Artificial Synthetic Scaffolds For Tissue Engineering Application Emphasizing The Role Of Biophysical Cues, Samerender Nagam Hanumantharao Jan 2020

Artificial Synthetic Scaffolds For Tissue Engineering Application Emphasizing The Role Of Biophysical Cues, Samerender Nagam Hanumantharao

Dissertations, Master's Theses and Master's Reports

The mechanotransduction of cells is the intrinsic ability of cells to convert the mechanical signals provided by the surrounding matrix and other cells into biochemical signals that affect several distinct processes such as tumorigenesis, wound healing, and organ formation. The use of biomaterials as an artificial scaffold for cell attachment, differentiation and proliferation provides a tool to modulate and understand the mechanotransduction pathways, develop better in vitro models and clinical remedies. The effect of topographical cues and stiffness was investigated in fibroblasts using polycaprolactone (PCL)- Polyaniline (PANI) based scaffolds that were fabricated using a self-assembly method and electrospinning. Through this …


Electrospun Nanofiber Scaffolds As A Platform For Breast Cancer Research, Carolynn Que Jan 2020

Electrospun Nanofiber Scaffolds As A Platform For Breast Cancer Research, Carolynn Que

Dissertations, Master's Theses and Master's Reports

Tumorigenesis is a complex process involving numerous cellular signaling cascades and environmental factors. Here, we report the fabrication of 3D scaffolds with different morphologies obtained by to study cancer cell proliferation and migration. Using an FDA approved, biocompatible and biodegradable polymer Polycaprolactone (PCL), we electrospun nanofiber scaffolds having mesh, aligned, and honeycomb morphologies. The role of the morphology and cellular preferences to nutrition in cell adhesion and proliferation was assessed using scaffolds obtained by electrospinning PCL with fluorescent fructose-like molecular probes. Cell viability, cell morphology, localized cellular growth as related to scaffold morphology and availability of the fructose-like molecular probes …


Multi-Functional Electrospun Nanofibers From Polymer Blends For Scaffold Tissue Engineering, Samerender Nagam Hanumantharao, Smitha Rao Jul 2019

Multi-Functional Electrospun Nanofibers From Polymer Blends For Scaffold Tissue Engineering, Samerender Nagam Hanumantharao, Smitha Rao

Michigan Tech Publications

Electrospinning and polymer blending have been the focus of research and the industry for their versatility, scalability, and potential applications across many different fields. In tissue engineering, nanofiber scaffolds composed of natural fibers, synthetic fibers, or a mixture of both have been reported. This review reports recent advances in polymer blended scaffolds for tissue engineering and the fabrication of functional scaffolds by electrospinning. A brief theory of electrospinning and the general setup as well as modifications used are presented. Polymer blends, including blends with natural polymers, synthetic polymers, mixture of natural and synthetic polymers, and nanofiller systems, are discussed in …


Self-Assembly Of 3d Nanostructures In Electrospun Polycaprolactone-Polyaniline Fibers And Their Application As Scaffolds For Tissue Engineering, Samerender Nagam Hanumantharao, Carolynn Que, Smitha Rao Mar 2019

Self-Assembly Of 3d Nanostructures In Electrospun Polycaprolactone-Polyaniline Fibers And Their Application As Scaffolds For Tissue Engineering, Samerender Nagam Hanumantharao, Carolynn Que, Smitha Rao

Department of Biomedical Engineering Publications

The fabrication of synthetic scaffolds that mimic the microenvironment of cells is a crucial challenge in materials science. The honeycomb morphology is one such bio-mimicking structure that possesses unique physical properties and high packing efficiency in a 3-dimensional space. Here, we present a novel method for electrospinning polycaprolactone-polyaniline with continuous, self-assembled, uniform, interwoven nanofibers forming patterns without the use of templates or porogens. By using the approach presented here, unique architectures mimicking the natural mechanical anisotropy of extracellular matrix were created by varying the electric field. Adult human dermal fibroblasts (HDFa) cells were successfully cultured on the nanofiber scaffolds without …


A 3d Biomimetic Scaffold Using Electrospinning For Tissue Engineering Applications, Samerender Nagam Hanumantharao Jan 2017

A 3d Biomimetic Scaffold Using Electrospinning For Tissue Engineering Applications, Samerender Nagam Hanumantharao

Dissertations, Master's Theses and Master's Reports

Electrospinning holds great promise for designing functional 3D biomimetic scaffolds for tissue engineering applications. The technique allows for the reproducible fabrication of 3D scaffolds with control over the porosity and thickness. In this work, a novel method for the synthesis of a 3D electroactive scaffold using electrospinning from polycaprolactone (PCL), Polyvinylidene Fluoride (PVDF) and Polyaniline (PANI) is reported. Additional scaffolds involving different morphologies of PCL, PCL-PVDF and PCL-PANI-PVDF were also fabricated and evaluated. The scaffolds were characterized using electron microscopy to visualize the morphologies. Infrared spectroscopy was used to confirm the presence of polymers and their respective phases in the …