Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Control

Discipline
Institution
Publication Year
Publication
Publication Type
File Type

Articles 1 - 12 of 12

Full-Text Articles in Biomedical Engineering and Bioengineering

Soft Robotic Arms For Fall Mitigation: Design, Control And Evaluation, Param Malhotra Aug 2022

Soft Robotic Arms For Fall Mitigation: Design, Control And Evaluation, Param Malhotra

All Theses

Most fall mitigation devices present a heavy system that avoid injuries to the user by preventing the impact of a fall. They are dependent on the user capability or on the probability that the user falls in the assumed manner the system was designed for. Often that is not the case, hence this project initiates a novel concept of using soft robotic arms to prevent falls from happening in the first place itself and save the user from any injuries. This thesis describes the prototype and development of a soft continuum robotic backpack system. The system can validate its use …


Development Of A Foot Interface To Control Supernumerary Robotics Limbs, Emma Morris May 2019

Development Of A Foot Interface To Control Supernumerary Robotics Limbs, Emma Morris

Rose-Hulman Summer Undergraduate Research Fellowships

Supernumerary robotic limbs (SRLs) can be used to provide a person with extra arms to help with difficult tasks. For example, a task that normally requires three hands to complete could be accomplished by just one person with an SRL. One way to control an SRL and still leave both hands available is to use the foot. This paper describes two parts of developing this foot interface: characterizing the range of forces that the foot can apply, and prototyping systems for different control methods. First, a small sample of data was collected to learn how much force the foot can …


A Holistic Approach To Facility Protection From Adventitious Agents – A Case Study, Matthew Osborne, Ronan Kelly, Ann Maria Mccrohan, Marie Murphy May 2016

A Holistic Approach To Facility Protection From Adventitious Agents – A Case Study, Matthew Osborne, Ronan Kelly, Ann Maria Mccrohan, Marie Murphy

Cell Culture Engineering XV

The Eli Lilly biologics manufacturing facility in Kinsale, Ireland has been operational since 2010 with a 100% cell culture contamination control success rate. The presentation will review the holistic approach to facility protection from adventitious agents that underpins this success including:

  • The risk assessment approach to points of entry and management via detectability and control measures
  • The approach to personnel training that considers human factors, increased vigilance and event simulations following strategies that are used in chemical synthesis process safety

The presentation will then focus on control of adventitious virus. The talk will briefly comment on the early warning measures …


Modeling, Analysis, And Control Of A Mobile Robot For In Vivo Fluoroscopy Of Human Joints During Natural Movements, Matthew A. Young May 2014

Modeling, Analysis, And Control Of A Mobile Robot For In Vivo Fluoroscopy Of Human Joints During Natural Movements, Matthew A. Young

Doctoral Dissertations

In this dissertation, the modeling, analysis and control of a multi-degree of freedom (mdof) robotic fluoroscope was investigated. A prototype robotic fluoroscope exists, and consists of a 3 dof mobile platform with two 2 dof Cartesian manipulators mounted symmetrically on opposite sides of the platform. One Cartesian manipulator positions the x-ray generator and the other Cartesian manipulator positions the x-ray imaging device. The robotic fluoroscope is used to x-ray skeletal joints of interest of human subjects performing natural movement activities. In order to collect the data, the Cartesian manipulators must keep the x-ray generation and imaging devices accurately aligned while …


Characterization Of Two-Dimensional Oculomotor Control During Goal-Directed Eye Movements In Humans, Vincent Dang Oct 2013

Characterization Of Two-Dimensional Oculomotor Control During Goal-Directed Eye Movements In Humans, Vincent Dang

Master's Theses (2009 -)

Oculomotor control is a subset of sensorimotor control that allows humans to make extremely accurate eye movements for ADL. Impairments to oculomotor control can increase the impact of sensorimotor control deficits, especially in neurodegenerative diseases such as MS. Here, a two-dimensional computational control system of saccades and smooth-pursuit eye movements was compiled from literature to systematically characterize oculomotor control in eight visually-healthy humans as a precursor to studying the relationship between oculomotor and sensorimotor control in patient populations. Subjects visually tracked a single dot on a 41 x 30.5 cm monitor in a dark room while eye positions were recorded …


Closed Loop Control Of A Cylindrical Tube Type Ionic Polymer Metal Composite (Ipmc), Benjamin Mead May 2013

Closed Loop Control Of A Cylindrical Tube Type Ionic Polymer Metal Composite (Ipmc), Benjamin Mead

UNLV Theses, Dissertations, Professional Papers, and Capstones

The goal of this research is to provide a framework for the integration of tube type, cylindrical Ionic Polymer Metal-Composite (IPMC) into conventional devices. IPMCs are one of the most widely used types of electro-active polymer actuator, due to their low electric driving potential and large deformation range. For this research a tube type IPMC was investigated. This IPMC has a circular cross section with four separate electrodes on its surface and a hole through the middle. The four electrodes allow for biaxial bending and accurate control of the tip location. One of the main advantages of using this type …


A Robotic Neuro-Musculoskeletal Simulator For Spine Research, Robb W. Colbrunn Jan 2013

A Robotic Neuro-Musculoskeletal Simulator For Spine Research, Robb W. Colbrunn

ETD Archive

An influential conceptual framework advanced by Panjabi represents the living spine as a complex neuromusculoskeletal system whose biomechanical functioning is rather finely dependent upon the interactions among and between three principal subsystems: the passive musculoskeletal subsystem (osteoligamentous spine plus passive mechanical contributions of the muscles), the active musculoskeletal subsystem (muscles and tendons), and the neural and feedback subsystem (neural control centers and feedback elements such as mechanoreceptors located in the soft tissues) [1]. The interplay between subsystems readily encourages "thought experiments" of how pathologic changes in one subsystem might influence another--for example, prompting one to speculate how painful arthritic changes …


Design, Analysis And Testing Of Haptic Feedback System For Laparoscopic Graspers In In Vivo Surgical Robots, Nikhil Salvi Jul 2012

Design, Analysis And Testing Of Haptic Feedback System For Laparoscopic Graspers In In Vivo Surgical Robots, Nikhil Salvi

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Laparo-Endoscopic Single Site (LESS) Robotics Surgery is an advanced technology in the field of Minimally Invasive Surgery (MIS). The LESS surgical robots significantly improve the surgeon’s accuracy, dexterity and visualization, and reduce the invasiveness of surgical procedure results in faster recovery time and improved cosmetic results. In a standard robotic endosurgery, the palpation of tissues is performed by laparoscopic graspers located at the end effectors. The master-slave configuration in robotic surgery leads in remote access to the operation site. Therefore, surgeon’s ability to perceive valuable sensory information is severely diminished. Sensory information such as haptics, which is essential for safe …


The Dynamics Of Legged Locomotion: Models, Analyses, And Challenges, Philip Holmes, Robert J. Full, Daniel E. Koditschek, John Guckenheimer Mar 2012

The Dynamics Of Legged Locomotion: Models, Analyses, And Challenges, Philip Holmes, Robert J. Full, Daniel E. Koditschek, John Guckenheimer

Daniel E Koditschek

Cheetahs and beetles run, dolphins and salmon swim, and bees and birds fly with grace and economy surpassing our technology. Evolution has shaped the breathtaking abilities of animals, leaving us the challenge of reconstructing their targets of control and mechanisms of dexterity. In this review we explore a corner of this fascinating world. We describe mathematical models for legged animal locomotion, focusing on rapidly running insects and highlighting past achievements and challenges that remain. Newtonian body–limb dynamics are most naturally formulated as piecewise-holonomic rigid body mechanical systems, whose constraints change as legs touch down or lift off. Central pattern generators …


Monitoring, Diagnosis, And Control For Advanced Anesthesia Management, Zhibin Tan Jan 2011

Monitoring, Diagnosis, And Control For Advanced Anesthesia Management, Zhibin Tan

Wayne State University Dissertations

Modern anesthesia management is a comprehensive and the most critical issue in medical care. During the past dacades, a large amount of research works have been focused on the problems of monitoring anesthesia depth, modeling the dynamics of anesthesia patient for the purpose of control, prediction, and diagnosis.

Monitoring the anesthesia depth is not only for keeping the patient in adquate anesthesia level but also for preventing the patient from overdosing. Several EEG based indexes have been developed such as the BIS, and Entropy etc. for measuring depth. However, reports mentioned that those indexes in some cases fail in detecting …


Electric-Powered Wheelchairs As An Assistive Technology, Aidan O'Dwyer, Malabika Basu, Eugene Coyle Jan 2008

Electric-Powered Wheelchairs As An Assistive Technology, Aidan O'Dwyer, Malabika Basu, Eugene Coyle

Conference papers

This paper briefly outlines recent work done, particularly in control systems, for electric powered wheelchairs. These mobility aids, first developed in the 1950’s [1], were improved with the incorporation of microprocessors. The requirement for mobility aids in general is rising; for example, it is reckoned that 1.5% of the U.K. population require such aids. As an assistive technology, electric powered wheelchairs have many benefits. Nevertheless, a reliable and robust such wheelchair has still to evolve.


Bie6300 - Irrigation & Conveyance Control Systems, Spring 2004, Gary P. Merkley Jan 2004

Bie6300 - Irrigation & Conveyance Control Systems, Spring 2004, Gary P. Merkley

Biological and Irrigation Engineering - OCW

This is a course regarding measurement of flow rates and water levels. Calibration, design, and selection of open-channel flow measurement structures. Design of irrigation conveyance and distribution system infrastructure.