Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Collagen

Other Biomedical Engineering and Bioengineering

Articles 1 - 3 of 3

Full-Text Articles in Biomedical Engineering and Bioengineering

Nonlinear Optical Microscopy Assessment Of Tissue Structure And Chondrocyte Viability Of Articular Cartilage, Michael Le May 2022

Nonlinear Optical Microscopy Assessment Of Tissue Structure And Chondrocyte Viability Of Articular Cartilage, Michael Le

All Theses

Articular cartilage functions to protect the ends of bones by providing a surface that can withstand compressive forces and minimize friction during movement. Collagen fibers form the organizational backbone of the extracellular matrix (ECM) in cartilage. Proteoglycans within the ECM function to retain water and provide the tissue with the swelling pressure needed to withstand compressional forces. Chondrocytes, the only type of cell found in articular cartilage, produces these collagen fibers and proteoglycans to maintain the tissue structure and function. Significant injuries to articular cartilage can damage the chondrocytes and disrupt their ability to maintain homeostasis in the tissue. Therefore, …


Fabrication And Characterization Of Collagen-Polypyrrole Constructs Using Direct-Ink Write Additive Manufacturing, Rooshan Arshad May 2019

Fabrication And Characterization Of Collagen-Polypyrrole Constructs Using Direct-Ink Write Additive Manufacturing, Rooshan Arshad

Electronic Thesis and Dissertation Repository

Current efforts in the tissue engineering field are being directed towards the creation of platforms which will facilitate in instructing cells towards biologically relevant outcomes such as stem cell differentiation and disease pathophysiology. Traditional fabrication methods serve as a limiting factor for the production of such platforms as they lack feature and geometric complexity. Additive Manufacturing (AM) offers advantage over said methods by affording designers creative freedom and great control over printed constructs. Such constructs can then be used to create appropriate models for study- ing a plethora of tissues and structures. An AM methodology for Direct-Ink Write (DIW) printing …


Electrospinning Of Core-Shell Collagen Nanofibers, Ying Li Aug 2013

Electrospinning Of Core-Shell Collagen Nanofibers, Ying Li

Electronic Thesis and Dissertation Repository

In tissue engineering, the scaffold plays a critical role in guiding and supporting cells to function and grow optimally. The electrospun nanofibrous scaffold can serve as a near ideal substrate for tissue engineering because it has high surface area and the three-dimensional interconnected porous network can enhance cell attachment and proliferation. Core-shell nanofibrous scaffolds produced with coaxial electrospinning allow bioactive molecule encapsulation to improve cell adhesion, mediate and promote the proper signaling among the cells for their functioning and growth. In the current study, core-shell collagen nanofibers were fabricated via coaxial electrospinning with horizontal and vertical configurations. Core-shell nanofibers with …