Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Biomedical Engineering and Bioengineering

Development And Application Of 3d Kinematic Methodologies For Biomechanical Modelling In Adaptive Sports And Rehabilitation, Anne Marie Severyn May 2022

Development And Application Of 3d Kinematic Methodologies For Biomechanical Modelling In Adaptive Sports And Rehabilitation, Anne Marie Severyn

All Dissertations

Biomechanical analysis is widely used to assess human movement sciences, specifically using three-dimensional motion capture modelling. There are unprecedented opportunities to increase quantitative knowledge of rehabilitation and recreation for disadvantaged population groups. Specifically, 3D models and movement profiles for human gait analysis were generated with emphasis on post-stroke patients, with direct model translation to analyze equivalent measurements while horseback riding in use of the alternative form of rehabilitation, equine assisted activities and therapies (EAAT) or hippotherapy (HPOT). Significant improvements in gait symmetry and velocity were found within an inpatient rehabilitation setting for patients following a stroke, and the developed movement …


Insect Antennae As Bioinspirational Superstrong Fiber-Based Microfluidics, Griffin J. Donley May 2022

Insect Antennae As Bioinspirational Superstrong Fiber-Based Microfluidics, Griffin J. Donley

All Theses

Nature is frequently turned to for inspiration for the creation of new materials. Insect antennae are hollow, blood-filled fibers with complex shape, and are cantilevered at the head. The antenna is muscle-free, but the insect can controllably flex, twist, and maneuver it laterally. To explain this behavior, a comparative study of structural and tensile properties of the antennae of Periplaneta americana (American cockroach), Manduca sexta (Carolina hawkmoth), and Vanessa cardui (painted lady butterfly) was performed. These antennae demonstrate a range of distinguishable tensile properties, responding either as brittle fibers (Manduca sexta) or strain-adaptive fibers that stiffen when stretched (Vanessa cardui …


A Real-Time Programmable Pulsatile Flow Pump For In Vitro Cardiovascular Experimentation, Rahul Raj Mechoor, Tyler Schmidt, Ethan Kung Nov 2016

A Real-Time Programmable Pulsatile Flow Pump For In Vitro Cardiovascular Experimentation, Rahul Raj Mechoor, Tyler Schmidt, Ethan Kung

Publications

Benchtop in vitro experiments are valuable tools for investigating the cardiovascular system and testing medical devices. Accurate reproduction of the physiologic flow waveforms at various anatomic locations is an important component of these experimental methods. This study discusses the design, construction, and testing of a low-cost and fully programmable pulsatile flow pump capable of continuously producing unlimited cycles of physiologic waveforms. It consists of a gear pump actuated by an AC servomotor and a feedback algorithm to achieve highly accurate reproduction of flow waveforms for flow rates up to 300 ml/s across a range of loading conditions. The iterative feedback …


Bioengineering Approach To Understanding Tmj Pathobiology, Jonathan Kuo May 2012

Bioengineering Approach To Understanding Tmj Pathobiology, Jonathan Kuo

All Dissertations

The temporomandibular joint (TMJ) is a load-bearing joint consisting of the condyle of the mandibular bone, the fossa eminence of the temporal bone, and a fibrocartilaginous disc held in between the bone surfaces by ligaments. The TMJ disc serves to distribute stress, lubricate movement, and protect the articular surfaces of the joint. Over ten million Americans suffer from TMJ disorders (TMD) that affect the movement and function of the joint, making everyday tasks like talking and eating difficult and painful. A wide variety of treatments and surgeries have been proposed and undertaken with limited success based on the varying degree …


Biomechanical Evaluation Of Two Methods Of Humeral Shaft Fixation, Joshua Catanzarite Jul 2008

Biomechanical Evaluation Of Two Methods Of Humeral Shaft Fixation, Joshua Catanzarite

All Theses

Biomechanical evaluations of fracture fixation devices attempt to determine implant performance by approximating the in vivo conditions. This performance is affected by many factors and relies on the complex bone-implant interface. Biomechanical tests can be designed in a variety of ways in order to evaluate device performance with respect to any number of these bone-implant interactions. Standardized tests, designed by groups such as the American Society for Testing and Materials (ASTM), are often designed either to determine the performance of a specific type of fixation device or for direct comparison between different devices. Additionally, many biomechanical evaluations are designed for …


Spatial Sensors For Quantitative Assessment Of Retrieved Arthroplasty Bearings, Melinda Harman May 2007

Spatial Sensors For Quantitative Assessment Of Retrieved Arthroplasty Bearings, Melinda Harman

All Dissertations

Evaluation of retrieved joint arthroplasty bearings provides unique evidence related to the physiological environment in which bearing materials are expected to perform. This dissertation describes the development of novel spatial sensors and measurement strategies for standardized, quantitative assessments of arthroplasty bearings, including total knee replacements, unicompartmental knee replacements, and total hip replacements. The approach is to assess bearings that endured a finite duration of function in patients, with particular emphasis on expanding our understanding of the biomechanical conditions specific to bearing function and wear in the physiological environment. Several quantifiable parameters are identified that prove comparable to pre-clinical in vitro …