Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Biomedical Engineering and Bioengineering

Il-12 Gene Electrotransfer Triggers A Change In Immune Response Within Mouse Tumors, Guilan Shi, Chelsea Edelblute, Sezgi Arpag, Cathryn Lundberg, Richard Heller Dec 2018

Il-12 Gene Electrotransfer Triggers A Change In Immune Response Within Mouse Tumors, Guilan Shi, Chelsea Edelblute, Sezgi Arpag, Cathryn Lundberg, Richard Heller

Bioelectrics Publications

Metastatic melanoma is an aggressive skin cancer with a relatively low survival rate. Immune-based therapies have shown promise in the treatment of melanoma, but overall complete response rates are still low. Previous studies have demonstrated the potential of plasmid IL-12 (pIL-12) delivered by gene electrotransfer (GET) to be an effective immunotherapy for melanoma. However, events occurring in the tumor microenvironment following delivery have not been delineated. Therefore, utilizing a B16F10 mouse melanoma model, we evaluated changes in the tumor microenvironment following delivery of pIL-12 using different GET parameters or injection of plasmid alone. The results revealed a unique immune cell …


Acetylation Profiles Of Histone And Non-Histone Proteins In Breast Cancer, Alla Karpova Dec 2018

Acetylation Profiles Of Histone And Non-Histone Proteins In Breast Cancer, Alla Karpova

McKelvey School of Engineering Theses & Dissertations

This study evaluates the impact of protein acetylation on breast cancer gene expression and the regulation of metabolism. Acetylation is the second abundant post-translational modification after phosphorylation, regulating protein activity and function. The alterations in acetylation of both histone and non-histone proteins is known to be related to many human diseases, including cancer. Acetylation and deacetylation of histones is closely associated with the regulation of gene expression, while acetylation of non-histone proteins may have a broad effect on major cellular processes, such as proliferation, metabolism, cell cycle and apoptosis, imbalanced regulation of which is essential for cancer development. Therefore, it’s …


Identification And Heterologous Reconstitution Of A 5-Alk(En)Ylresorcinol Synthase From Endophytic Fungus Shiraia Sp. Slf14, Huiwen Yan, Lei Sun, Jinge Huang, Yixing Qiu, Fuchao Xu, Riming Yan, Du Zhu, Wei Wang, Jixun Zhan Oct 2018

Identification And Heterologous Reconstitution Of A 5-Alk(En)Ylresorcinol Synthase From Endophytic Fungus Shiraia Sp. Slf14, Huiwen Yan, Lei Sun, Jinge Huang, Yixing Qiu, Fuchao Xu, Riming Yan, Du Zhu, Wei Wang, Jixun Zhan

Biological Engineering Faculty Publications

A new type III polyketide synthase gene (Ssars) was discovered from the genome of Shiraia sp. Slf14, an endophytic fungal strain from Huperzia serrata. The intron-free gene was cloned from the cDNA and ligated to two expression vectors pET28a and YEpADH2p-URA3 for expression in Escherichia coli BL21(DE3) and Saccharomyces cerevisiae BJ5464, respectively. SsARS was efficiently expressed in E. coli BL21(DE3), leading to the synthesis of a series of polyketide products. Six major products were isolated from the engineered E. coli and characterized as 1,3-dihydroxyphenyl-5-undecane, 1,3-dihydroxyphenyl-5-cis-6'-tridecene,1,3-dihydroxyphenyl-5-tridecane, 1,3-dihydroxyphenyl-5-cis-8'-pentadecene, 1,3-dihydroxyphenyl-5-pentadecane and 1,3-dihydroxyphenyl-5-cis-10'-heptadecene, respectively, …


Determinants Of Multi-Scale Patterning In Growth Plate Cartilage, Alek Erickson May 2018

Determinants Of Multi-Scale Patterning In Growth Plate Cartilage, Alek Erickson

Theses & Dissertations

ABSTRACT

Functional architectures of complex adaptive systems emerge by dynamic control over properties of individual components. During skeletal development, growth plate cartilage matches bone geometries to body plan requisites by spatiotemporally regulating chondrocyte actions. Bone growth potential is managed by the proximodistal patterning of chondrocyte populations into differentiation zones, while growth vectors are specified by the unique columnar arrangement of clonal groups. Chondrocyte organization at both tissue and cell levels is influenced by a cartilage-wide communication network that relies on zone-specific release and interpretation of paracrine signals. Despite genetic characterization of signaling interactions necessary for cartilage maturation, the regulatory mechanisms …


Optimizing Genetic Manipulation Of Methanogens Through Faster Cloning Techniques, Merrisa Jennings May 2018

Optimizing Genetic Manipulation Of Methanogens Through Faster Cloning Techniques, Merrisa Jennings

Biological and Agricultural Engineering Undergraduate Honors Theses

Methanogenesis is the biological production of methane. Only anaerobic archaea known as methanogens are capable of such a metabolic feat. They have strict living conditions and substrate sources which determine their rate of metabolism. This is of particular importance from a greenhouse gas reduction perspective or biogas capturing perspective. One of the best ways to optimize methanogen methane production is via genetic manipulation. The current procedures are timely though, therefore a faster cloning processes should be developed. The objective of this study was to optimize a premade genetic transformation kit known as the Gibson Kit. The Gibson Kit was supposed …


Transcriptomics To Develop Biochemical Network Models In Cyanobacteria, Bridget E. Hegarty, Jordan Peccia, Ratanachat Racharaks Apr 2018

Transcriptomics To Develop Biochemical Network Models In Cyanobacteria, Bridget E. Hegarty, Jordan Peccia, Ratanachat Racharaks

Yale Day of Data

Through targeted genetic manipulations guided by network modeling, we will create a flexible, cyanobacteria-based platform for the production of biofuel-precursors and valuable chemical products. To build gene-metabolite predictive models, we have characterized Synecococcus elongatus sp. UTEX 2973’s (henceforth, UTEX 2973) gene expression and metabolite production under a number of environmental conditions.


Tumor Cell Death After Electrotransfer Of Plasmid Dna Is Associated With Cytosolic Dna Sensor Upregulation, Katarina Znidar, Masa Bosnjak, Nina Semenova, Olga N. Pakhomova, Loree Heller, Maja Cemazar Jan 2018

Tumor Cell Death After Electrotransfer Of Plasmid Dna Is Associated With Cytosolic Dna Sensor Upregulation, Katarina Znidar, Masa Bosnjak, Nina Semenova, Olga N. Pakhomova, Loree Heller, Maja Cemazar

Bioelectrics Publications

Cytosolic DNA sensors are a subgroup of pattern recognition receptors (PRRs) and are activated by the abnormal presence of the DNA in the cytosol. Their activation leads to the upregulation of pro-inflammatory cytokines and chemokines and can also induce cell death. The presence of cytosolic DNA sensors and inflammatory cytokines in TS/A murine mammary adenocarcinoma and WEHI 164 fibrosarcoma cells was demonstrated using real time reverse transcription polymerase chain reaction (RT-PCR), western blotting and enzyme-linked immunosorbent assay (ELISA). After electrotransfer of plasmid DNA (pDNA) using two pulse protocols, the upregulation of DNA-depended activator of interferon regulatory factor or Z-DNA binding …


Wild-Type P53 Enhances Endothelial Barrier Function By Mediating Rac1 Signalling And Rhoa Inhibition, Nektarios Barabutis, Christiana Dimitropoulou, Betsy Gregory, John D. Catravas Jan 2018

Wild-Type P53 Enhances Endothelial Barrier Function By Mediating Rac1 Signalling And Rhoa Inhibition, Nektarios Barabutis, Christiana Dimitropoulou, Betsy Gregory, John D. Catravas

Bioelectrics Publications

Inflammation is the major cause of endothelial barrier hyper-permeability, associated with acute lung injury and acute respiratory distress syndrome. This study reports that p53 "orchestrates" the defence of vascular endothelium against LPS, by mediating the opposing actions of Rac1 and RhoA in pulmonary tissues. Human lung microvascular endothelial cells treated with HSP90 inhibitors activated both Rac1- and P21-activated kinase, which is an essential element of vascular barrier function. 17AAG increased the phosphorylation of both LIMK and cofilin, in contrast to LPS which counteracted those effects. Mouse lung microvascular endothelial cells exposed to LPS exhibited decreased expression of phospho-cofilin. 17AAG treatment …


Electrotransfer Of Different Control Plasmids Elicits Different Antitumor Effectiveness In B16.F10 Melanoma, Masa Bosnjak, Tanjo Jesenko, Urska Kamensek, Gregor Sersa, Jaka Lavrencak, Loree Heller, Maja Cemazar Jan 2018

Electrotransfer Of Different Control Plasmids Elicits Different Antitumor Effectiveness In B16.F10 Melanoma, Masa Bosnjak, Tanjo Jesenko, Urska Kamensek, Gregor Sersa, Jaka Lavrencak, Loree Heller, Maja Cemazar

Bioelectrics Publications

Several studies have shown that different control plasmids may cause antitumor action in different murine tumor models after gene electrotransfer (GET). Due to the differences in GET protocols, plasmid vectors, and experimental models, the observed antitumor effects were incomparable. Therefore, the current study was conducted comparing antitumor effectiveness of three different control plasmids using the same GET parameters. We followed cytotoxicity in vitro and the antitumor effect in vivo after GET of control plasmids pControl, pENTR/U6 scr and pVAX1 in B16.F10 murine melanoma cells and tumors. Types of cell death and upregulation of selected cytosolic DNA sensors and cytokines were …