Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2016

Discipline
Institution
Keyword
Publication
Publication Type
File Type

Articles 31 - 60 of 900

Full-Text Articles in Biomedical Engineering and Bioengineering

Ct Image Registration-Based Lung Mechanics In Copd, Sandeep Bodduluri Dec 2016

Ct Image Registration-Based Lung Mechanics In Copd, Sandeep Bodduluri

Theses and Dissertations

Chronic obstructive pulmonary disease (COPD) is a growing health concern associated with high morbidity and mortality, and is currently the third-ranked cause of death in the United States. COPD is characterized by airflow limitation that is not fully reversible and includes chronic bronchitis, functional small airway disease, and emphysema. The interrelationship between emphysema and airway disease in COPD makes it a highly complex and heterogeneous disorder. Appropriate diagnosis of COPD is vital to administer targeted therapy strategies that can improve patient’s quality of life and reduce the frequency of COPD associated exacerbations. Although spirometry or pulmonary function tests are ...


Enhanced Phagocytic Capacity Endows Chondrogenic Progenitor Cells With A Novel Scavenger Function Within Injured Cartilage, Cheng Zhou Dec 2016

Enhanced Phagocytic Capacity Endows Chondrogenic Progenitor Cells With A Novel Scavenger Function Within Injured Cartilage, Cheng Zhou

Theses and Dissertations

Articular cartilage underwent serious joint injuries seldom repair spontaneously and might progress to post-traumatic osteoarthritis. This is majorly because articular cartilage’s unique properties that lack blood and nerve supply intrinsically. This peculiar structure, in addition, generates an unfavorable environment for certain phagocytes (macrophages, monocytes, neutrophils, etc) to infiltrate to cartilage to scavenge debris from cartilage matrix and cell caused from joint injuries. Therefore, physiological and functional regeneration of damaged cartilage is urgently needed and several clinical techniques have been developed, including microfracture, autograft transplantation, autologous chondrocytes implantation.

We previously identified highly migratory cells emerged and repopulated in cartilage damaged ...


An Emg-Based Patient Monitoring System Using Zynq Soc Device, Farhad Fallahlalehzari Dec 2016

An Emg-Based Patient Monitoring System Using Zynq Soc Device, Farhad Fallahlalehzari

UNLV Theses, Dissertations, Professional Papers, and Capstones

This thesis describes the design, development, and testing of an EMG-based patient monitoring system using the Zynq device. Zynq is a system on chip device designed by Xilinx which consists of an ARM dual cortex-A9 processor as well as an FPGA integrated into one chip. This work also analyzes the performance of image-processing algorithms on this system and compares that performance to more traditional PC-based systems. Image processing algorithms, such as Sobel edge detection, dilation and erosion, could be used in conjunction with a camera for the patient monitoring purposes. These algorithms often perform sub-optimally on processors because of their ...


Radiation Therapy And Dosing Material Transport Methodology, Robert O'Brien Dec 2016

Radiation Therapy And Dosing Material Transport Methodology, Robert O'Brien

UNLV Theses, Dissertations, Professional Papers, and Capstones

A technique is examined here that utilizes high energy beta decays from a short lived radioisotope to treat medical conditions such as shallow cancerous lesions. A major benefit of beta particle interaction in tissue is a fixed penetration depth for the charged particle, with dose limited to the ultimate range of the beta particle. This method improves on some current techniques of radioactive brachytherapy, where "seeds" are placed inside patients through temporary or permanent implantation in order to kill cancerous cells or inhibit growth of tissue. The use of low energy gamma-rays is the most common method of treatment currently ...


The Effects Of Cryopreservation On Human Dental Pulp-Derived Mesenchymal Stem Cells, Allison Elaine Tomlin Dec 2016

The Effects Of Cryopreservation On Human Dental Pulp-Derived Mesenchymal Stem Cells, Allison Elaine Tomlin

UNLV Theses, Dissertations, Professional Papers, and Capstones

Many studies have demonstrated clinical applications for the use of dental pulp stem cells (DPSC) for the treatment of various conditions. This has driven medical and scientific interest in the collection, isolation and banking of DPSC tissues for research into these potential therapies. Few studies to date have evaluated the viability of DPSC following long-term cryopreservation. The purpose of this study is to evaluate the effects of cryopreservation on dental pulp-derived stem cells (DPSC) viability over a period of three years. Dental pulp-derived stem cells were isolated and cultured from thirty-one healthy teeth. DPSC isolates were assessed for doubling-time and ...


Design Of A Flexible Control Platform And Miniature In Vivo Robots For Laparo-Endoscopic Single-Site Surgeries, Lou P. Cubrich Dec 2016

Design Of A Flexible Control Platform And Miniature In Vivo Robots For Laparo-Endoscopic Single-Site Surgeries, Lou P. Cubrich

Mechanical (and Materials) Engineering -- Dissertations, Theses, and Student Research

Minimally-invasive laparoscopic procedures have proven efficacy for a wide range of surgical procedures as well as benefits such as reducing scarring, infection, recovery time, and post-operative pain. While the procedures have many advantages, there are significant shortcomings such as limited instrument motion and reduced dexterity. In recent years, robotic surgical technology has overcome some of these limitations and has become an effective tool for many types of surgeries. These robotic platforms typically have an increased workspace, greater dexterity, improved ergonomics, and finer control than traditional laparoscopic methods. This thesis presents the designs of both a four degree-of-freedom (DOF) and 5-DOF ...


The Impacts Of Arterial Occlusion, Sex, And Exercise On Arteriogenesis And Functional Vasodilation, Megan Tze-Mei Chu Dec 2016

The Impacts Of Arterial Occlusion, Sex, And Exercise On Arteriogenesis And Functional Vasodilation, Megan Tze-Mei Chu

Master's Theses and Project Reports

The most frequent clinical presentation of peripheral arterial occlusive disease (PAOD) is intermittent claudication, which may be caused by impaired vasodilation. Patients demonstrate both local and systemic impairments in vasodilation, but as the collateral circulation is the primary site of resistance to the ischemic zone, impaired collateral vasodilation would have the greatest potential to induce claudication. Collateral function following arterial occlusion is not well defined, but immature collaterals may demonstrate impaired vasodilation in animal models, although this is potentially improved with exercise training. Furthermore, as females exhibit poorer physical function with ischemia and less improvement with therapeutic exercise, there appears ...


Functional 3-D Cellulose And Nitrocellulose Paper-Based, Microfluidic Device Utilizing Elisa Technology For The Detection/Distinction Between Hemorrhagic And Ischemic Strokes, Alicia Leanne Holler Dec 2016

Functional 3-D Cellulose And Nitrocellulose Paper-Based, Microfluidic Device Utilizing Elisa Technology For The Detection/Distinction Between Hemorrhagic And Ischemic Strokes, Alicia Leanne Holler

Master's Theses and Project Reports

The purpose of this thesis project is to demonstrate and evaluate an enzyme-linked immunosorbent assay (ELISA) on a paper microfluidic device platform. The integration of ELISA technology onto paper microfluidic chips allows for a quantitative detection of stroke biomarkers, such as glial fibrillary acidic protein (GFAP). Dye experiments were performed to confirm fluid connectivity throughout the 3D chips. Several chip and housing designs were fabricated to determine an optimal design for the microfluidic device. Once this design was finalized, development time testing was performed. The results confirmed that the paper microfluidic device could successfully route fluid throughout its channels at ...


A Multi-Channel 3d-Printed Bioreactor For Evaluation Of Growth And Production In The Microalga Dunaliella Sp, Cristian A. Cox Dec 2016

A Multi-Channel 3d-Printed Bioreactor For Evaluation Of Growth And Production In The Microalga Dunaliella Sp, Cristian A. Cox

Electronic Theses and Dissertations

We explored the capabilities of additive manufacturing using a photo-cured jetted material 3D printer to manufacture a milli-microfluidic device with direct application in microalgae Dunaliella sp growth and intracellular compounds biosynthesis tests. A continuous microbioreactor for microalgae culture was CAD designed and successfully built in 1 hour and 49 minutes using black photopolymer cured by UV and a support material. The microreactor was made up of 2 parts including the bioreactor itself and a microchannel network for culture media fluids and microalgae. Both parts were assembled to form a single unit. Additional optical and auxiliar components were added. An external ...


Mechanism Of Interaction Of Peptide Modified Nanoparticles With Porphyromonas Gingivalis., Ankita Jain Dec 2016

Mechanism Of Interaction Of Peptide Modified Nanoparticles With Porphyromonas Gingivalis., Ankita Jain

Electronic Theses and Dissertations

Studies suggest that P. gingivalis functions as a keystone pathogen and interacts with primary colonizers in the supragingival biofilm such as S. gordonii. This interaction contributes to the initial colonization of the oral cavity by P. gingivalis and thus represents a potential target for therapeutic intervention. We have identified a peptide (BAR) derived from the streptococcal SspB protein that functions to inhibit P. gingivalis adherence to S. gordonii. In addition, we showed that nanoparticles (NPs) functionalized with BAR inhibit this interaction more potently than free soluble peptide, possibly by promoting interaction with P. gingivalis at higher valency than free peptide ...


A Cad System For Early Diagnosis Of Autism Using Different Imaging Modalities., Marwa Maher Tawfik Ismail Dec 2016

A Cad System For Early Diagnosis Of Autism Using Different Imaging Modalities., Marwa Maher Tawfik Ismail

Electronic Theses and Dissertations

The term “autism spectrum disorder” (ASD) refers to a collection of neuro-developmental disorders that affect linguistic, behavioral, and social skills. Autism has many symptoms, most prominently, social impairment and repetitive behaviors. It is crucial to diagnose autism at an early stage for better assessment and investigation of this complex syndrome. There have been a lot of efforts to diagnose ASD using different techniques, such as imaging modalities, genetic techniques, and behavior reports. Imaging modalities have been extensively exploited for ASD diagnosis, and one of the most successful ones is Magnetic resonance imaging(MRI),where it has shown promise for the ...


Development Of A Semi-Interpenetrating Network Hydrogel To Study The Effects Of Mild Traumatic Brain Injury On Astrocyte Remodeling, Amanda Ederle Dec 2016

Development Of A Semi-Interpenetrating Network Hydrogel To Study The Effects Of Mild Traumatic Brain Injury On Astrocyte Remodeling, Amanda Ederle

Health, Human Performance and Recreation Undergraduate Honors Theses

Traumatic brain injuries (TBIs) are a widespread public health concern affecting over 2.5 million people in the United States alone (1). TBIs are the leading cause of death and disability in children (ages 0-14), and their devastating effects can also be seen in vast population subsets such as professional athletes and combat soldiers (1).

Damaged astrocytes, the specialized glial cells associated with the maintenance of the brain’s environment, respond to injury by altering regulation of certain proteins and ion channels in an attempt to maintain homeostasis (3). Studies have also shown that following a TBI, astrocytes seek to ...


Exploring The Production Of Extracellular Matrix By Astrocytes In Response To Mimetic Traumatic Brain Injury, Addison Walker Dec 2016

Exploring The Production Of Extracellular Matrix By Astrocytes In Response To Mimetic Traumatic Brain Injury, Addison Walker

Theses and Dissertations

Following injury to the central nervous system, extracellular modulations are apparent at

the site of injury, often resulting in a glial scar. Astrocytes are mechanosensitive cells, which can create a neuroinhibitory extracellular environment in response to injury. The aim for this research was to gain a fundamental understanding of the affects a diffuse traumatic brain injury has on the astrocyte extracellular environment after injury. To accomplish this, a bioreactor culturing astrocytes in 3D constructs delivered 150G decelerations with 20% biaxial strain to mimic a traumatic brain injury. Experiments were designed to compare the potential effects of media type, number of ...


A Bifunctional Nanocomposites Based Electrochemical Biosensor For In-Field Detection Of Pathogenic Bacteria In Food, Meng Xu Dec 2016

A Bifunctional Nanocomposites Based Electrochemical Biosensor For In-Field Detection Of Pathogenic Bacteria In Food, Meng Xu

Theses and Dissertations

This research focused on the application of electrochemical biosensors for the rapid detection of pathogenic bacteria, Escherichia coli O157:H7 and Salmonella Typhimurium, in foods. The possible presence of pathogenic bacteria in foods has always been a great threat to the wellbeing of people and the revenue of food companies. Therefore, the demand for rapid and sensitive methods to detect foodborne pathogens is growing. In this research, an impedimetric immunosensor was first developed for the rapid detection of E. coli O157:H7 and S. Typhimurium in foods. It was based on the techniques of immunomagnetic separation, enzyme labelling, and electrochemical ...


Examination Of Pseudomonas Fluorescence As A Recombinant Expression Host: Cloning, Expression, And Chromatography, Ahmed K.Ali Elmasheiti Dec 2016

Examination Of Pseudomonas Fluorescence As A Recombinant Expression Host: Cloning, Expression, And Chromatography, Ahmed K.Ali Elmasheiti

Theses and Dissertations

In an effort to expand the pool of bacterium useful for biotechnology applications, Pseudomonas fluorescens, a common gram negative microbe, was examined for its ability to function in a recombinant setting. P. fluorescens is ubiquitous in nature and was initially identified as a soil bacterium found in dirt and is typically associated with plant material. Past literature indicates that it shared characteristics common to Escherichia coli and Bacillus subtilis, including simple growth conditions and potential cloning vectors, providing motivation to look into both the upstream and downstream characteristics of this bacterium. First, it was demonstrated that P. fluorescens could be ...


Scaffold And Tissue Based Therapies To Improve Skeletal Muscle Regeneration After Volumetric Muscle Loss, Benjamin Kasukonis Dec 2016

Scaffold And Tissue Based Therapies To Improve Skeletal Muscle Regeneration After Volumetric Muscle Loss, Benjamin Kasukonis

Theses and Dissertations

Volumetric muscle loss (VML) is an injury to skeletal muscle characterized by a loss of more than 20% of a muscles volume. The combination of the bulk loss of tissue, transection and separation of myofibers proximal and distal to the injury, loss of innervation and blood supply, and the depletion of muscle progenitor cells results in permanent fibrosis and functional deficits due to loss of contractile tissue. Scaffolds, cells, and engineered constructs have been explored as potential therapeutic interventions to induce myogenesis at the site of a VML injury in animal models, in addition to limited clinical trials. This dissertation ...


A Portable And Automatic Biosensing Instrument For Detection Of Foodborne Pathogenic Bacteria In Food Samples, Zhuo Zhao Dec 2016

A Portable And Automatic Biosensing Instrument For Detection Of Foodborne Pathogenic Bacteria In Food Samples, Zhuo Zhao

Theses and Dissertations

Foodborne diseases are a growing public health problem. In recent years, many rapid detection methods have been reported, but most of them are still in lab research and not practical for use in the field. In this study, a portable and automatic biosensing instrument was designed and constructed for separation and detection of target pathogens in food samples using nanobead-based magnetic separation and quantum dots (QDs)-labeled fluorescence measurement. The instrument consisted of a laptop with LabVIEW software, a data acquisition card (DAQ), a fluorescent detector, micro-pumps, stepper motors, and 3D printed tube holders. First, a sample in a syringe ...


Development Of Breast Tissue Phantoms For Enhanced Terahertz Imaging Utilizing Microdiamond And Nano-Onion Particles, Alec Walter Dec 2016

Development Of Breast Tissue Phantoms For Enhanced Terahertz Imaging Utilizing Microdiamond And Nano-Onion Particles, Alec Walter

Electrical Engineering Undergraduate Honors Theses

This thesis presents the work performed to develop tissue phantoms and a contrast agent that will be used in future research of terahertz time-domain imaging of breast tumor margins. Since an excised breast tumor can contain healthy fibrous and fatty tissues along with invasive ductal carcinoma (IDC), three phantom materials were developed. Solid phantom materials were made by using TX151 to solidify water in order to tune the refractive index and absorption coefficient of the fibrous tissue phantom and IDC phantom to the properties of freshly excised breast tissue. Various amounts of olive oil were added to the water prior ...


A Validated Software Application To Measure Fiber Organization In Soft Tissue, Erica E. Morrill, Azamat N. Tulepbergenov, Christina J. Stender, Roshani Lamichhane, Raquel J. Brown, Trevor J. Lujan Dec 2016

A Validated Software Application To Measure Fiber Organization In Soft Tissue, Erica E. Morrill, Azamat N. Tulepbergenov, Christina J. Stender, Roshani Lamichhane, Raquel J. Brown, Trevor J. Lujan

Mechanical and Biomedical Engineering Faculty Publications and Presentations

The mechanical behavior of soft connective tissue is governed by a dense network of fibrillar proteins in the extracellular matrix. Characterization of this fibrous network requires the accurate extraction of descriptive structural parameters from imaging data, including fiber dispersion and mean fiber orientation. Common methods to quantify fiber parameters include fast Fourier transforms (FFT) and structure tensors, however, information is limited on the accuracy of these methods. In this study, we compared these two methods using test images of fiber networks with varying topology. The FFT method with a band-pass filter was the most accurate, with an error of 0 ...


Nanoindentation Techniques For The Evaluation Of Silicon Nitride Thin Films, Weston T. Mangin Dec 2016

Nanoindentation Techniques For The Evaluation Of Silicon Nitride Thin Films, Weston T. Mangin

Master's Theses and Project Reports

Silicon nitride thin films are of interest in the biomedical engineering field due to their biocompatibility and favorable tribological properties. Evaluation and understanding of the properties of these films under diverse loading and failure conditions is a necessary prerequisite to their use in biomedical devices. Three wafers of silicon nitride-coated silicon were obtained from Lawrence Livermore National Laboratory and used to create 96 samples. Samples were subjected to nanoindentation testing to evaluate the mechanical properties of the film. Samples were subjected to nanoimpact testing to compare the damage resistance of the film to separate nanoimpact types. Samples were subjected to ...


Hollow Fiber Membranes For Artificial Lung Applications, Lauren Reed Dec 2016

Hollow Fiber Membranes For Artificial Lung Applications, Lauren Reed

Chemical Engineering Undergraduate Honors Theses

Artificial lungs are in use, but difficult issues remain in the field of membrane development related to fouling issues. Currently there are external artificial lungs circulating blood outside the body, taking out the carbon dioxide, and inserting oxygenated blood back into the body. An example of this type of machine is the ExtraCorporeal Membrane Oxygenation (ECMO) machine currently used in hospitals. The ECMO takes over the functions for both the lungs and the heart but is only available for short term use by patients with respiratory failure due to infections [1]. The fibers in the machine develop fouling due to ...


Laboratory Development Of A Self-Powered Fontan For Treatment Of Congenital Heart Disease, Arka Das Dec 2016

Laboratory Development Of A Self-Powered Fontan For Treatment Of Congenital Heart Disease, Arka Das

Dissertations and Theses

Around 8% of all newborns with a Congenital Heart Defect (CHD) have only a single functioning ventricle. The Fontan operation has served as a palliation for this anomaly for decades, but the surgery entails multiple complications and survival rate is less than 50% by adulthood. A rapidly testable novel alternative is proposed by creating a bifurcating graft, or Injection Jet Shunt (IJS), used to “entrain” the pulmonary flow and thus provide assistance while reducing the caval pressure. A benchtop Mock Flow Loop (MFL) is configured to validate this hypothesis. The MFL is based on a Lumped-Parameter Model (LPM) of the ...


Accuracy Of Patient-Specific Organ Dose Estimates Obtained Using An Automated Image Segmentation Algorithm, Taly Gilat-Schmidt, Adam S. Wang, Thomas Coradi, Benjamin Haas, Josh Star-Lack Nov 2016

Accuracy Of Patient-Specific Organ Dose Estimates Obtained Using An Automated Image Segmentation Algorithm, Taly Gilat-Schmidt, Adam S. Wang, Thomas Coradi, Benjamin Haas, Josh Star-Lack

Biomedical Engineering Faculty Research and Publications

The overall goal of this work is to develop a rapid, accurate, and automated software tool to estimate patient-specific organ doses from computed tomography (CT) scans using simulations to generate dose maps combined with automated segmentation algorithms. This work quantified the accuracy of organ dose estimates obtained by an automated segmentation algorithm. We hypothesized that the autosegmentation algorithm is sufficiently accurate to provide organ dose estimates, since small errors delineating organ boundaries will have minimal effect when computing mean organ dose. A leave-one-out validation study of the automated algorithm was performed with 20 head-neck CT scans expertly segmented into nine ...


Methods And Apparatus For Electrical Stimulation, Jeffrey Hargrove, William G. Mavity, Lauren R. Briggs, Robert M. Gengreau Nov 2016

Methods And Apparatus For Electrical Stimulation, Jeffrey Hargrove, William G. Mavity, Lauren R. Briggs, Robert M. Gengreau

Mechanical Engineering Patents

A method of treating a neurological condition in a patient, the method including the step of applying an electrical stimulation from conductors to the patient's head at a stimulation application site. In some embodiments, the electrical stimulation includes a composite electrical signal further comprising at least one signal form configured to provide long-term treatment of the neurological condition and at least one signal form configured to provide analgesia for short-term pain relief. The invention also provides an electrical stimulation apparatus having an electrical signal generator adapted to provide an electrical signal form configured to provide long-term treatment of a ...


Optical Coherence Photoacoustic Microscopy (Oc-Pam) For Multimodal Imaging, Xiaojing Liu Nov 2016

Optical Coherence Photoacoustic Microscopy (Oc-Pam) For Multimodal Imaging, Xiaojing Liu

FIU Electronic Theses and Dissertations

Optical coherence tomography (OCT) and Photoacoustic microscopy (PAM) are two noninvasive, high-resolution, three-dimensional, biomedical imaging modalities based on different contrast mechanisms. OCT detects the light backscattered from a biological sample either in the time or spectral domain using an interferometer to form an image. PAM is sensitive to optical absorption by detecting the light-induced acoustic waves to form an image. Due to their complementary contrast mechanisms, OCT and PAM are suitable for being combined to achieve multimodal imaging.

In this dissertation, an optical coherence photoacoustic microscopy (OC-PAM) system was developed for in vivo multimodal retinal imaging with a pulsed broadband ...


Importance Of Heat And Pressure For Solubilization Of Recombinant Spider Silk Proteins In Aqueous Solution, Justin Jones, Thomas Harris, Paula F. Oliveira, Brianne Bell, Abdulrahman Alhabib, Randolph V. Lewis Nov 2016

Importance Of Heat And Pressure For Solubilization Of Recombinant Spider Silk Proteins In Aqueous Solution, Justin Jones, Thomas Harris, Paula F. Oliveira, Brianne Bell, Abdulrahman Alhabib, Randolph V. Lewis

Biology Faculty Publications

The production of recombinant spider silk proteins continues to be a key area of interest for a number of research groups. Several key obstacles exist in their production as well as in their formulation into useable products. The original reported method to solubilize recombinant spider silk proteins (rSSp) in an aqueous solution involved using microwaves to quickly generate heat and pressure inside of a sealed vial containing rSSp and water. Fibers produced from this system are remarkable in their mechanical ability and demonstrate the ability to be stretched and recover 100 times. The microwave method dissolves the rSSPs with dissolution ...


Performance Factors In Neurosurgical Simulation And Augmented Reality Image Guidance, Ryan Armstrong Nov 2016

Performance Factors In Neurosurgical Simulation And Augmented Reality Image Guidance, Ryan Armstrong

Electronic Thesis and Dissertation Repository

Virtual reality surgical simulators have seen widespread adoption in an effort to provide safe, cost-effective and realistic practice of surgical skills. However, the majority of these simulators focus on training low-level technical skills, providing only prototypical surgical cases. For many complex procedures, this approach is deficient in representing anatomical variations that present clinically, failing to challenge users’ higher-level cognitive skills important for navigation and targeting. Surgical simulators offer the means to not only simulate any case conceivable, but to test novel approaches and examine factors that influence performance. Unfortunately, there is a void in the literature surrounding these questions. This ...


Hydrodeoxygenation Of Pinyon Juniper Catalytic Pyrolysis Oil To Hydrocarbon Fuels, Hossein Jahromi, Foster Agblevor Nov 2016

Hydrodeoxygenation Of Pinyon Juniper Catalytic Pyrolysis Oil To Hydrocarbon Fuels, Hossein Jahromi, Foster Agblevor

Biological Engineering Faculty Publications

As a renewable source, biomass is an essential option for diminishing dependence on conventional fossil fuel energy sources. Pyrolysis is a promising technology for the conversion of biomass into liquid fuels. However, several challenges associated with using pyrolysis oils such as their high acidity and low energy content inhibit their direct use as transportation fuels. We conducted a batch hydrodeoxygenation of pinyon juniper catalytic pyrolysis oil using Ni/SiO2-Al2O3 catalyst to improve the following properties of the oil: heating value, acidity, oxygen content, water content, and viscosity. During the hydrogenation process, the influence of four experimental factors; temperature, catalyst loading ...


Point-Of-Care Microfluidic Device For Blood Typing, Hector Moncada-Hernandez Nov 2016

Point-Of-Care Microfluidic Device For Blood Typing, Hector Moncada-Hernandez

TechTalks

There has been increasing efforts to translate laboratory blood tests analysis into portable, reliable, and cheap miniaturized devices. Electrokinetic-based microfluidic devices provide a new approach to blood tests with a simple infrastructure for the manipulation of cells. Previous studies show red blood cells’ (RBC) dielectrophoretic response changes based on the different ABO-Rh antigens present in the cells membrane. In this research, an alternate-current electric signal with a frequency sweep (0.1 – 1 MHz) is applied through an array of electrodes to generate non-uniform electric fields and induce dielectrophoretic forces on RBC from all eight blood types. The RBC’s response ...


Raman Spectroscopy Detects Distant Invasive Brain Cancer Cells Centimeters Beyond Mri Capability In Humans, Michael Jermyn, Joannie Desroches, Jeanne Mercier, Karl St-Arnaud Nov 2016

Raman Spectroscopy Detects Distant Invasive Brain Cancer Cells Centimeters Beyond Mri Capability In Humans, Michael Jermyn, Joannie Desroches, Jeanne Mercier, Karl St-Arnaud

Open Dartmouth: Faculty Open Access Scholarship

Surgical treatment of brain cancer is limited by the inability of current imaging capabilities such as magnetic resonance imaging (MRI) to detect the entirety of this locally invasive cancer. This results in residual cancer cells remaining following surgery, leading to recurrence and death. We demonstrate that intraoperative Raman spectroscopy can detect invasive cancer cells centimeters beyond pathological T1-contrast-enhanced and T2-weighted MRI signals. This intraoperative optical guide can be used to detect invasive cancer cells and minimize post-surgical cancer burden. The detection of distant invasive cancer cells beyond MRI signal has the potential to increase the effectiveness of surgery and directly ...