Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2016

Biomaterials

Institution
Keyword
Publication
Publication Type

Articles 1 - 30 of 43

Full-Text Articles in Biomedical Engineering and Bioengineering

Activity Preservation Of Plasmonic Biosensors With A Metal-Organic Framework, Lu Wang Dec 2016

Activity Preservation Of Plasmonic Biosensors With A Metal-Organic Framework, Lu Wang

McKelvey School of Engineering Theses & Dissertations

Antibody-antigen recognition enables antibody-conjugated nanostructures to serve as plasmonic biosensors with tunable specificity. However due to the instability of antibodies, these biosensors are susceptible to changes in the environment such as heat and aridity, leading to constraints on the transportation and handling of these sensors. Here we establish a method using a metal-organic framework crystal to preserve biosensor activity under severe environmental conditions, including exposure to high temperatures, an organic solvent and a proteolytic agent. After zeolitic imidazolate framework-8 (ZIF-8) crystals formed for 12 hours on a biosensor of gold nanorods conjugated with a model antibody, rabbit IgG, 80% of …


The Efficacy Of Bionate As An Articulating Surface For Joint Hemiarthroplasty, Sarah Dedecker Dec 2016

The Efficacy Of Bionate As An Articulating Surface For Joint Hemiarthroplasty, Sarah Dedecker

Electronic Thesis and Dissertation Repository

Hemiarthroplasty procedures replace the diseased side of the joint with an implant to maximize bone preservation while maintaining more native anatomy than a total joint replacement. Even though hemiarthroplasty procedures have been clinically successful, they cause progressive cartilage damage over time due to the use of relatively stiff metallic implant materials. This work investigates the role of low moduli implant material on implant-cartilage contact mechanics and early in vitro cartilage wear. A finite element simulation was developed to assess the effect of low moduli implants in the range of 0.015-0.288 GPa on contact mechanics. Higher contact area and lower peak …


Hollow Fiber Membranes For Artificial Lung Applications, Lauren Reed Dec 2016

Hollow Fiber Membranes For Artificial Lung Applications, Lauren Reed

Chemical Engineering Undergraduate Honors Theses

Artificial lungs are in use, but difficult issues remain in the field of membrane development related to fouling issues. Currently there are external artificial lungs circulating blood outside the body, taking out the carbon dioxide, and inserting oxygenated blood back into the body. An example of this type of machine is the ExtraCorporeal Membrane Oxygenation (ECMO) machine currently used in hospitals. The ECMO takes over the functions for both the lungs and the heart but is only available for short term use by patients with respiratory failure due to infections [1]. The fibers in the machine develop fouling due to …


A Multi-Channel 3d-Printed Bioreactor For Evaluation Of Growth And Production In The Microalga Dunaliella Sp, Cristian A. Cox Dec 2016

A Multi-Channel 3d-Printed Bioreactor For Evaluation Of Growth And Production In The Microalga Dunaliella Sp, Cristian A. Cox

Electronic Theses and Dissertations

We explored the capabilities of additive manufacturing using a photo-cured jetted material 3D printer to manufacture a milli-microfluidic device with direct application in microalgae Dunaliella sp growth and intracellular compounds biosynthesis tests. A continuous microbioreactor for microalgae culture was CAD designed and successfully built in 1 hour and 49 minutes using black photopolymer cured by UV and a support material. The microreactor was made up of 2 parts including the bioreactor itself and a microchannel network for culture media fluids and microalgae. Both parts were assembled to form a single unit. Additional optical and auxiliar components were added. An external …


Characterization Of Molecular Communication Based On Cell Metabolism Through Mutual Information And Flux Balance Analysis, Zahmeeth Sayed Sakkaff Dec 2016

Characterization Of Molecular Communication Based On Cell Metabolism Through Mutual Information And Flux Balance Analysis, Zahmeeth Sayed Sakkaff

Department of Computer Science and Engineering: Dissertations, Theses, and Student Research

Synthetic biology is providing novel tools to engineer cells and access the basis of their molecular information processing, including their communication channels based on chemical reactions and molecule exchange. Molecular communication is a discipline in communication engineering that studies these types of communications and ways to exploit them for novel purposes, such as the development of ubiquitous and heterogeneous communication networks to interconnect biological cells with nano and biotechnology-enabled devices, i.e., the Internet of Bio-Nano Things. One major problem in realizing these goals stands in the development of reliable techniques to control the engineered cells and their behavior from the …


Nanoindentation Techniques For The Evaluation Of Silicon Nitride Thin Films, Weston T. Mangin Dec 2016

Nanoindentation Techniques For The Evaluation Of Silicon Nitride Thin Films, Weston T. Mangin

Master's Theses

Silicon nitride thin films are of interest in the biomedical engineering field due to their biocompatibility and favorable tribological properties. Evaluation and understanding of the properties of these films under diverse loading and failure conditions is a necessary prerequisite to their use in biomedical devices. Three wafers of silicon nitride-coated silicon were obtained from Lawrence Livermore National Laboratory and used to create 96 samples. Samples were subjected to nanoindentation testing to evaluate the mechanical properties of the film. Samples were subjected to nanoimpact testing to compare the damage resistance of the film to separate nanoimpact types. Samples were subjected to …


Bi-Directional Fatigue Life Behavior Of Bovine Meniscus, Jaremy Creechley Dec 2016

Bi-Directional Fatigue Life Behavior Of Bovine Meniscus, Jaremy Creechley

Boise State University Theses and Dissertations

Meniscal injuries due to tissue tearing are prevalent in the U.S. yet the failure behavior of the meniscus is poorly understood. Clinical studies indicate that fatigue failure causes many of these tears. The highly circumferentially aligned fibers result in transversely isotropic material properties. Tears preferentially align bi-directionally to the fiber orientation. The aim of this study is to present the bi-directional fatigue life behavior of meniscal fibrocartilage. A novel fatigue life approach was developed to achieve this aim. Forty-eight bovine specimens were subjected to cyclic sinusoidal tension-tension stress at 2 Hz until rupture. Normalized peak tensile stresses were determined at …


Biopolymer Electrospun Nanofiber Mats To Inactivate And Remove Bacteria, Katrina Ann Rieger Nov 2016

Biopolymer Electrospun Nanofiber Mats To Inactivate And Remove Bacteria, Katrina Ann Rieger

Doctoral Dissertations

The persistence of antibiotic resistance in bacterial pathogens remains a primary concern for immunocompromised and critically-ill hospital patients. Hospital associated infections can be deadly and reduce the successes of medical advancements, such as, cancer therapies and medical implants. Thus, it is imperative to develop materials that can (i) deliver new antibiotics with accuracy, as well as (ii) uptake pathogenic microbes. In this work, we will demonstrate that electrospun nanofiber mats offer a promising platform for both of these objectives because of their high surface-to-volume ratio, interconnected high porosity, gas permeability, and ability to contour to virtually any surface. To provide …


Extracellular Matrix Control Of Breast Cancer Metastasis And Dormancy, Lauren Barney Nov 2016

Extracellular Matrix Control Of Breast Cancer Metastasis And Dormancy, Lauren Barney

Doctoral Dissertations

To metastasize, a cell must travel through circulation to a secondary tissue, and this process causes 90% of all cancer deaths. Although inefficient, metastasis is not random, and only capable seeds in hospitable soils are capable of outgrowing into detectable metastases. The overall hypothesis in this work is that the secondary tissue microenvironment, particularly the extracellular matrix (ECM), mediates metastasis. We posit that the ability of metastatic cells to survive dormancy, exit quiescence, and colonize a tissue depends upon the ability of the soil to sustain survival, and subsequently trigger outgrowth. We created a simple biomaterial platform with systematic control …


Use Of A Modified Greenscreen Tool To Conduct A Screening-Level Comparative Hazard Assessment Of Conventional Silver And Two Forms Of Nanosilver., Jennifer Sass, Lauren Heine, Nina Hwang Nov 2016

Use Of A Modified Greenscreen Tool To Conduct A Screening-Level Comparative Hazard Assessment Of Conventional Silver And Two Forms Of Nanosilver., Jennifer Sass, Lauren Heine, Nina Hwang

Environmental and Occupational Health Faculty Publications

BACKGROUND: Increased concern for potential health and environmental impacts of chemicals, including nanomaterials, in consumer products is driving demand for greater transparency regarding potential risks. Chemical hazard assessment is a powerful tool to inform product design, development and procurement and has been integrated into alternative assessment frameworks. The extent to which assessment methods originally designed for conventionally-sized materials can be used for nanomaterials, which have size-dependent physical and chemical properties, have not been well established. We contracted with a certified GreenScreen profiler to conduct three GreenScreen hazard assessments, for conventional silver and two forms of nanosilver. The contractor summarized publicly …


Lipid Coated Microbubbles And Low Intensity Pulsed Ultrasound Enhance Chondrogenesis Of Human Mesenchymal Stem Cells In 3d Printed Scaffolds, Mitra Aliabouzar, Lijie Grace Zhang, Kausik Sarkar Nov 2016

Lipid Coated Microbubbles And Low Intensity Pulsed Ultrasound Enhance Chondrogenesis Of Human Mesenchymal Stem Cells In 3d Printed Scaffolds, Mitra Aliabouzar, Lijie Grace Zhang, Kausik Sarkar

Medicine Faculty Publications

Lipid-coated microbubbles are used to enhance ultrasound imaging and drug delivery. Here we apply these microbubbles along with low intensity pulsed ultrasound (LIPUS) for the first time to enhance proliferation and chondrogenic differentiation of human mesenchymal stem cells (hMSCs) in a 3D printed poly-(ethylene glycol)-diacrylate (PEG-DA) hydrogel scaffold. The hMSC proliferation increased up to 40% after 5 days of culture in the presence of 0.5% (v/v) microbubbles and LIPUS in contrast to 18% with LIPUS alone. We systematically varied the acoustic excitation parameters—excitation intensity, frequency and duty cycle—to find 30 mW/cm2, 1.5 MHz and 20% duty cycle to be optimal …


Surface Engineering Of Titanium Alloy To Stimulate The Bone Regeneration, Yubin Meng, Zhenduo Cui, Zhaoyang Li, Xue Li, Jin Zhao, Xubo Yuan, Xianjin Yang Oct 2016

Surface Engineering Of Titanium Alloy To Stimulate The Bone Regeneration, Yubin Meng, Zhenduo Cui, Zhaoyang Li, Xue Li, Jin Zhao, Xubo Yuan, Xianjin Yang

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Fluorescent Materials Design At Nanoscale For Biomedical Photonics In Near Infrared Window, Kohei Soga, Masao Kamimura Oct 2016

Fluorescent Materials Design At Nanoscale For Biomedical Photonics In Near Infrared Window, Kohei Soga, Masao Kamimura

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Recent Approaches In Designing Bioadhesive Materials Inspired By Mussel Adhesive Protein, Pegah Kord Forooshani, Bruce P. Lee Oct 2016

Recent Approaches In Designing Bioadhesive Materials Inspired By Mussel Adhesive Protein, Pegah Kord Forooshani, Bruce P. Lee

Department of Biomedical Engineering Publications

Marine mussels secret protein-based adhesives, which enable them to anchor to various surfaces in a saline, intertidal zone. Mussel foot proteins (Mfps) contain a large abundance of a unique, catecholic amino acid, Dopa, in their protein sequences. Catechol offers robust and durable adhe-sion to various substrate surfaces and contributes to the curing of the adhesive plaques. In this article, we review the unique features and the key functionalities of Mfps, catechol chemistry, and strategies for preparing catechol-functionalized poly- mers. Specifically, we reviewed recent findings on the contributions of various features of Mfps on interfacial binding, which include coacervate formation, surface …


Long-Term Biocompatibility, Imaging Appearance And Tissue Effects Associated With Delivery Of A Novel Radiopaque Embolization Bead For Image-Guided Therapy, Karun Sharma, Zainab Bascal, Hugh Kilpatrick, Koorosh Ashrafi, Sean L. Willis, Matthew R. Dreher, Andrew L. Lewis Oct 2016

Long-Term Biocompatibility, Imaging Appearance And Tissue Effects Associated With Delivery Of A Novel Radiopaque Embolization Bead For Image-Guided Therapy, Karun Sharma, Zainab Bascal, Hugh Kilpatrick, Koorosh Ashrafi, Sean L. Willis, Matthew R. Dreher, Andrew L. Lewis

Pediatrics Faculty Publications

The objective of this study was to undertake a comprehensive long-term biocompatibility and imaging assessment of a new intrinsically radiopaque bead (LC Bead LUMI™) for use in transarterial embolization. The sterilized device and its extracts were subjected to the raft of ISO10993 biocompatibility tests that demonstrated safety with respect to cytotoxicity, mutagenicity, blood contact, irritation, sensitization, systemic toxicity and tissue reaction. Intra-arterial administration was performed in a swine model of hepatic arterial embolization in which 0.22–1 mL of sedimented bead volume was administered to the targeted lobe(s) of the liver. The beads could be visualized during the embolization procedure with …


Controlled Delivery Of Angiogenic And Arteriogenic Growth Factors From Biodegradable Poly(Ester Amide) Electrospun Fibers For Therapeutic Angiogenesis, Somiraa S. Said Aug 2016

Controlled Delivery Of Angiogenic And Arteriogenic Growth Factors From Biodegradable Poly(Ester Amide) Electrospun Fibers For Therapeutic Angiogenesis, Somiraa S. Said

Electronic Thesis and Dissertation Repository

Therapeutic angiogenesis relies on the delivery of exogenous growth factors to stimulate neovessel formation. However, systemic administration of angiogenic factors results in rapid clearance from the site of interest due to their short biological half-life. In this work, we are reporting controlled delivery of a ‘cocktail’ of growth factors, an angiogenic factor −fibroblast growth factor-2 (FGF2), and an arteriogenic factor −fibroblast growth factor-9 (FGF9), from biodegradable poly(ester amide) (PEA) electrospun fibers towards targeting neovascular formation and maturation. FGF2 and FGF9 were dual loaded into PEA fibers using a mixed blend and emulsion electrospinning technique. Matrigel tube formation and Boyden chamber …


Cartilage Engineering: Optimization Of Media For Chondrogenic Differentiation In Vitro, Evan Surma, Sherry L. Harbin, Hongji Zhang, Stacy Halum Aug 2016

Cartilage Engineering: Optimization Of Media For Chondrogenic Differentiation In Vitro, Evan Surma, Sherry L. Harbin, Hongji Zhang, Stacy Halum

The Summer Undergraduate Research Fellowship (SURF) Symposium

Lower back pain from intervertebral disc injury affects around 84% of the population at some point in their life, which at its worst may cause total immobilization. This pain can only be temporarily relieved by spinal fusion or intervertebral disc replacement; however, both of these cause loss of natural motion in patients by removing damaged fibrocartilage discs. While these techniques help mitigate pain briefly, no permanent solution exists currently to both relieve pain and preserve natural motion. My work may be a solution by eventually providing patient-specific implants that resemble native tissue in the regeneration process that could be absorbed …


Alginate Hydrogels As Three-Dimensional Scaffolds For In Vitro Culture Models Of Growth Plate Cartilage Development And Porcine Embryo Elongation, Taylor D. Laughlin Jul 2016

Alginate Hydrogels As Three-Dimensional Scaffolds For In Vitro Culture Models Of Growth Plate Cartilage Development And Porcine Embryo Elongation, Taylor D. Laughlin

Department of Agricultural and Biological Systems Engineering: Dissertations, Theses, and Student Research

The establishment of in vitro culture models utilizes tissue engineering principles to design functional mimics of in vivo environments in vitro. Advantages for the use of in vitro culture models include ethical alleviation of animal models for therapeutic testing, cost efficiency, and a greater ability to study specific mechanisms via a systematic, ground-up approach to development. In this thesis, alginate hydrogels are utilized in the development of in vitro culture models of porcine embryo elongation and growth plate cartilage development. First, the effect of scaffold and modifications to the scaffold were explored in both projects. In order to modulate …


Bioengineered Platforms To Study Carcinoma Cell Response To Drug Treatment, Thuy V. Nguyen Jul 2016

Bioengineered Platforms To Study Carcinoma Cell Response To Drug Treatment, Thuy V. Nguyen

Doctoral Dissertations

The tumor extracellular matrix (ECM) plays an important role in facilitating tumor growth and mediating tumor cells' resistance to drugs. However, during drug development, potential chemotherapeutics are screened in plastic plates, which lack relevant ECM physicochemical cues. In order to improve drug development process, this dissertation includes the development of relevant 2D and 3D biomaterial systems that can be used to study carcinoma cell response to drug treatment. A novel poly(ethylene glycol)-phosphorylcholine (PEG-PC) high-throughput biomaterial platform was developed to study how the ECM mechanochemical properties affect cancer cells' response to drug. The PEG-PC biomaterial is optically transparent, has a mechanical …


Structure And Dynamics Of Charged Colloidal Disks In Colloid-Polymer Mixtures, Suhasini Kishore Jul 2016

Structure And Dynamics Of Charged Colloidal Disks In Colloid-Polymer Mixtures, Suhasini Kishore

Doctoral Dissertations

Complex fluid mixtures of colloids and polymers are extensively used in several conventional and emerging technological applications. Particles self-assemble under different conditions to form colloidal glasses and gels and it often leads to the development of unusual viscoelastic features. In the case of aspherical particles, shape anisotropy and physical aging effects add to the existing complexities so the implementation of a strategic formulation method to improve performance and stability remains a critical challenge. This thesis presents a comprehensive analysis of particle interactions in mixtures of charged disk-shaped colloids and weakly-adsorbing polymers like poly(ethylene oxide) (PEO). Here, we discuss the behavior …


Prosthetic Leg Kit For Deployment In Developing Countries, Brian Murphy, Dominique Porcincula, Derek Morgan, Kendall Ruggles, Christian Aguayo Jun 2016

Prosthetic Leg Kit For Deployment In Developing Countries, Brian Murphy, Dominique Porcincula, Derek Morgan, Kendall Ruggles, Christian Aguayo

Biomedical Engineering

The World Health Organization estimates that over 30 million people require some sort of prosthetic technology. However, traditional prosthetic fitting practices take a lot of time and cost a lot of money, making them inaccessible to millions of people around the world. StandUP Worldwide is an interdisciplinary project team devoted to creating low-cost prosthetic technologies for use around the world, especially in resource poor areas. They are currently developing a low cost, below-the-knee prosthetic kit that can be easily deployed in a resource-poor area. The following presents their solution for a below-the-knee prosthetic socket, foot, and leg.


Inter-Droplet Membranes For Mechanical Sensing Applications, Nima Tamaddoni Jahromi May 2016

Inter-Droplet Membranes For Mechanical Sensing Applications, Nima Tamaddoni Jahromi

Doctoral Dissertations

This dissertation combines self-assembly phenomena of amphiphilic molecules with soft materials to create and characterize mechanoelectrical transducers and sensors whose sensing elements are thin-film bioinspired membranes comprised of phospholipids or amphiphilic polymers. We show that the structures of these amphiphilic molecules tune the mechanical and electrical properties of these membranes. We show that these properties affect the mechanoelectrical sensing characteristic and range of operation of these membrane transducers. In the experiments, we construct and characterize a membrane-based hair cell embodiment that enables the membrane to be responsive to mechanical perturbations of the hair. The resulting oscillations of membranes formed between …


Investigating The Mechanical Behaviors Of Organic/Inorganic Composite Bone Scaffolds, Parker Davidson May 2016

Investigating The Mechanical Behaviors Of Organic/Inorganic Composite Bone Scaffolds, Parker Davidson

Biomedical Engineering Undergraduate Honors Theses

The regeneration of bone over a large area cannot occur without a structure for the bone cells to bind and divide. The use of an organic/inorganic composite bone scaffold appears to be a promising alternative to the current clinical standard of bone grafting. Bone grafting is very limited, in that the size and shape of the area are hard to replicate and the use of donor tissue can trigger an immunologic response resulting in rejection of the bone tissue. This study experimented with composite bone scaffolds which can be made to fit the shape of the area in which bone …


Customization Of Titanate Nanofiber Bioscaffolds, Jared Hopkins May 2016

Customization Of Titanate Nanofiber Bioscaffolds, Jared Hopkins

Biomedical Engineering Undergraduate Honors Theses

In the field of orthopedic devices implant loosening is a major issue resulting in the majority of device failures. These failures result in the need for costly secondary procedures. To reduce device loosening an improved method of tissue anchoring is required. A previously studied titanate nanofiber bioscaffold has been shown to be safely implantable and to contribute to the differentiation of mesenchymal stem cells to osteocytes. Through the customization of both physical and chemical characteristics this titanate nanofiber bioscaffold was fabricated as a potential means to enhance tissue anchoring for use with orthopedic devices. This customization was enabled by acoustic …


Isolation Of Metallic Single-Walled Carbon Nanotubes For Electrically Conductive Tissue Engineering Scaffolds, Jakob Hockman May 2016

Isolation Of Metallic Single-Walled Carbon Nanotubes For Electrically Conductive Tissue Engineering Scaffolds, Jakob Hockman

Biomedical Engineering Undergraduate Honors Theses

Metallic single-walled carbon nanotubes (m-SWNTs) were separated from pristine SWNTs using affinity chromatography for use in electrically conductive tissue engineering scaffolds. Approximately one third of SWNTs have metallic properties. Separations were achieved using a protocol modified from Liu & coworkers (2011) in order to improve the method for cell culture environments. Samples enriched in m-SWNTs were isolated and characterized. However, challenges still remain for the complete separation of m-SWNTs from their semiconducting counterpart (s-SWNTs) using this protocol. Approaches to improve separation and reduce the difficulties associated with processing the nanotubes were suggested. One of the ultimate destinations of these nanotubes …


Interaction Of Fibrinogen With Fibronectin: Purification And Characterization Of A Room Temperature-Stable Fibrinogen-Fibronectin Complex From Normal Human Plasma, Ayman E. Ismail May 2016

Interaction Of Fibrinogen With Fibronectin: Purification And Characterization Of A Room Temperature-Stable Fibrinogen-Fibronectin Complex From Normal Human Plasma, Ayman E. Ismail

Department of Chemical and Biomolecular Engineering: Theses and Student Research

A fibrinogen-fibronectin complex (γγ’pdFI-pdFN) was purified from normal human plasma using a sequence of cryoprecipitation, ammonium sulfate fractionation, and DEAE Sepharose chromatography. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) under reducing condition showed both a 1:1 stoichiometric ratio of fibrinogen (FI) to fibronectin (FN) as well as a stoichiometric ratio of 1:1 of γg to gγ’. The γγ’pdFI-pdFN complex was non-covalent in nature as it was disrupted by affinity adsorption to Gelatin Sepharose where pdFN bound strongly and the disrupted γγ’pdFI fell through the chromatographic column. Surprisingly, the purified γγ’pdFI-pdFN complex was more broadly thermally stable than plasma FI (pdFI) …


Chitosan As An Antiviral, Tayler Pauls May 2016

Chitosan As An Antiviral, Tayler Pauls

Biomedical Engineering Undergraduate Honors Theses

There is no broad-based antiviral medication available today; there are specific antivirals, for example, the antiretroviral for HIV. However, these specific antivirals are not available in each country and can be problematic for specific patients. Chitosan is proposed as a possible broad-based antiviral, which has already demonstrated antibacterial properties, antiviral properties in plants, is used for wound healing and as a hydrogel among other medical applications. The methods used are transfection of NIH-3T3 cells with GFP-adenovirus with 0.1%, 0.5%, and 1% chitosan added to virus prior to transfection. Fluorescence microscopy and flow cytometry data has validated that the use of …


Bending Stiffness In Cadaveric And Composite Long Bones Following Total Joint Replacement, Danielle Gehron, Anderson Adams Ms, Tatsuya Sueyoshi Md, Scott R. Small Ms Apr 2016

Bending Stiffness In Cadaveric And Composite Long Bones Following Total Joint Replacement, Danielle Gehron, Anderson Adams Ms, Tatsuya Sueyoshi Md, Scott R. Small Ms

Rose-Hulman Undergraduate Research Publications

Several biomechanics studies have utilized commercially available replicate bone models as an alternative to cadaveric tissue specimens, in part due to their ease of handling and reduced expense. In an effort to validate the use of replicate bone specimens in biomechanics research, a number of studies have compared material properties of whole tibia and femur specimens to those of similar cadaveric specimens. Many of these validation studies have ascertained that the material properties of whole bone composite models fall within the range of those properties of cadaveric specimens, while offering reduced interspecimen variability. Current literature lacks, however, the direct comparison …


Patterned Alginate Hydrogels To Induce Chondrocyte Alignment, Jordan Catherine Verplank, Taylor D. Laughlin, Angela K. Pannier Apr 2016

Patterned Alginate Hydrogels To Induce Chondrocyte Alignment, Jordan Catherine Verplank, Taylor D. Laughlin, Angela K. Pannier

UCARE Research Products

The growth plate has an intricate architecture, and this architecture is necessary for directional growth of bones. Specifically, the cells align in longitudinal columns. As the growth plate expands with this pattern, the bone elongates with the same alignment pattern. The purpose of this research is to mimic this single celled, columnar alignment in vitro. In developing this alignment in vitro, this research will contribute to the overall study of growing growth for the development of improved therapeutic treatments and engineered tissues for transplants.


Equilibrium Testing Of Rat Tail Tendon: An Analysis Of The Viscoelastic Properties Of Collagen Under Different Strain Points, Joshua C. Witt Feb 2016

Equilibrium Testing Of Rat Tail Tendon: An Analysis Of The Viscoelastic Properties Of Collagen Under Different Strain Points, Joshua C. Witt

Graduate Theses - Biology & Biomedical Engineering

Instantaneous tensile testing and stress-relaxation testing are forms of mechanical testing used to determine the elastic and viscoelastic properties of biological tissue. Equilibrium testing is a form of testing that combines both of these testing approaches at different strain points to determine the elastic properties of a material and also assess their viscoelastic properties in the same test. This testing method is commonly used on highly viscoelastic materials such as cartilage but has never been fully described in dense collagenous materials such as tendon or ligament. This analysis utilizes different strain points selected to capture the classic non-linear behavior of …