Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biomedical Engineering and Bioengineering

The Design And Validation Of A Computational Rigid Body Model For Study Of The Radial Head, Cassandra Woodcock Dec 2013

The Design And Validation Of A Computational Rigid Body Model For Study Of The Radial Head, Cassandra Woodcock

Theses and Dissertations

Rigid body modeling has historically been used to study various features of the elbow joint including both physical and computational models. Computational modeling provides an inexpensive, easily customizable, and effective method by which to predict and investigate the response of a physiological system to in vivo stresses and applied perturbations. Utilizing computer topography scans of a cadaveric elbow, a virtual representation of the joint was created using the commercially available MIMICS(TM) and SolidWorks(TM) software packages. Accurate 3D articular surfaces, ligamentous constraints, and joint contact parameters dictated motion. The model was validated against two cadaveric studies performed by Chanlalit ...


Characterization Of Two-Dimensional Oculomotor Control During Goal-Directed Eye Movements In Humans, Vincent Dang Oct 2013

Characterization Of Two-Dimensional Oculomotor Control During Goal-Directed Eye Movements In Humans, Vincent Dang

Master's Theses (2009 -)

Oculomotor control is a subset of sensorimotor control that allows humans to make extremely accurate eye movements for ADL. Impairments to oculomotor control can increase the impact of sensorimotor control deficits, especially in neurodegenerative diseases such as MS. Here, a two-dimensional computational control system of saccades and smooth-pursuit eye movements was compiled from literature to systematically characterize oculomotor control in eight visually-healthy humans as a precursor to studying the relationship between oculomotor and sensorimotor control in patient populations. Subjects visually tracked a single dot on a 41 x 30.5 cm monitor in a dark room while eye positions were ...


Multiscale Modeling Of Toxoplasma Gondii, Adam Michael Sullivan Aug 2013

Multiscale Modeling Of Toxoplasma Gondii, Adam Michael Sullivan

Doctoral Dissertations

Toxoplasma gondii is a potentially deadly parasite that uses a very unique way of manipulating the cell and immune systems. To investigate the mechanics of how the parasite spreads within hosts, several interwoven topics related to the study of within-host dynamics of Toxoplasma gondii are presented here. Understanding the complicated methods of how the parasite grows, dies, invades, replicates, and evades the host immune response is the critical aim of this independent research. Understanding the processes of acute and chronic infection are studied independently, followed by modeling the two processes in the same model. Finally, the dynamic models are simulated ...


The Design And Validation Of A Computational Model Of The Human Wrist Joint, Afsarul Mir May 2013

The Design And Validation Of A Computational Model Of The Human Wrist Joint, Afsarul Mir

Theses and Dissertations

Advancements in computational capabilities have allowed researchers to turn towards modeling as an efficient tool to replicate and predict outcomes of complex systems. Computational models of the musculoskeletal system have gone through various iterations with early versions employing dramatic simplifications. In this work, a three-dimensional computational model of the wrist joint was developed. It accurately recreated the skeletal structures of the hand and wrist and represented the constraints imposed by soft tissue structures like ligaments, tendons, and other surrounding tissues. It was developed to function as a tool to investigate the biomechanical contributions of structures and the kinematic response of ...


Finite Element Study Of Transcranial Direct Current Stimulation: Customization Of Models And Montages, Dennis Q. Truong Jan 2013

Finite Element Study Of Transcranial Direct Current Stimulation: Customization Of Models And Montages, Dennis Q. Truong

Dissertations and Theses

Transcranial Direct Current Stimulation (tDCS) is a non-invasive neuromodulation technique that applies low amplitude current via electrodes placed on the scalp. Rather than directly eliciting a neuronal response, tDCS is believed to modulate excitability – encouraging or suppressing activity in regions of the brain depending on the polarity of stimulation. The particular application of tDCS is often determined by the electrode configuration and intensity of stimulation. MRI-derived finite element models have been developed to analyze the effect of these parameters allowing novel electrode configurations to be tested in subject specific models. By creating a subject specific model of an obese subject ...