Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Biomedical Engineering and Bioengineering

Design And Development Of A Novel Expanding Pedicle Screw For Use In The Osteoporotic Lumbar Spine, Parham Rasoulinejad Aug 2013

Design And Development Of A Novel Expanding Pedicle Screw For Use In The Osteoporotic Lumbar Spine, Parham Rasoulinejad

Electronic Thesis and Dissertation Repository

Pedicle screws are commonly utilized in spinal surgery; however, traditional designs often do not provide adequate fixation in osteoporotic spines. The objective of this thesis was to develop a novel expanding screw for use in osteoporotic lumbar pedicles. Helical screws capable of expanding post insertion were built on a rapid prototype machine. A materials testing machine performed axial load to failure tests in both Sawbones and cadaveric specimens comparing the new design to traditional screws (rate = 10mm/min to 20 mm). Output parameters included yield load, ultimate load, stiffness, energy to failure and total energy. The expanding screw showed a …


An Investigation Of Subaxial Cervical Spine Trauma And Surgical Treatment Through Biomechanical Simulation And Kinematic Analysis, Stewart D. Mclachlin Apr 2013

An Investigation Of Subaxial Cervical Spine Trauma And Surgical Treatment Through Biomechanical Simulation And Kinematic Analysis, Stewart D. Mclachlin

Electronic Thesis and Dissertation Repository

In vitro biomechanical investigations can help to identify changes in subaxial cervical spine (C3-C7) stability following injury, and determine the efficacy of surgical treatments through controlled joint simulation experiments and kinematic analyses. However, with the large spectrum of cervical spine trauma, a large fraction of the potential injuries have not been examined biomechanically. This includes a lack of studies investigating prevalent flexion-distraction injuries. Therefore, the overall objective of this thesis was to investigate the changes in subaxial cervical spine kinematic stability with simulated flexion-distraction injuries and current surgical instrumentation approaches using both established and novel biomechanical techniques.

Three in vitro …