Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Biomedical Engineering and Bioengineering

Comment On "Quadriceps Protects The Anterior Cruciate Ligament", Antonie J. Van Den Bogert Dec 2013

Comment On "Quadriceps Protects The Anterior Cruciate Ligament", Antonie J. Van Den Bogert

Antonie J. van den Bogert

No abstract provided.


Personal Navigation Via High-Resolution Gait-Corrected Inertial Measurement Units, Özkan Bebek, Michael A. Suster, Srihari Rajgopal, Michael J. Fu, Xuemei Huang, M. Cenk Çavu¸So˘Glu,, Darrin J. Young, Mehran Mehregany, Antonie J. Van Den Bogert, Carlos H. Mastrangelo Dec 2013

Personal Navigation Via High-Resolution Gait-Corrected Inertial Measurement Units, Özkan Bebek, Michael A. Suster, Srihari Rajgopal, Michael J. Fu, Xuemei Huang, M. Cenk Çavu¸So˘Glu,, Darrin J. Young, Mehran Mehregany, Antonie J. Van Den Bogert, Carlos H. Mastrangelo

Antonie J. van den Bogert

In this paper, a personal micronavigation system that uses high-resolution gait-corrected inertial measurement units is presented. The goal of this paper is to develop a navigation system that uses secondary inertial variables, such as velocity, to enable long-term precise navigation in the absence of Global Positioning System (GPS) and beacon signals. In this scheme, measured zerovelocity duration from the ground reaction sensors is used to reset the accumulated integration errors from accelerometers and gyroscopes in position calculation. With the described system, an average position error of 4 m is achieved at the end of half-hour walks.


Simulation Of Lower Limb Axial Arterial Length Change During Locomotion, Melissa D. Young, Matthew C. Streicher, Richard J. Beck, Antonie J. Van Den Bogert, Azita Tajaddini, Brian L. Davis Dec 2013

Simulation Of Lower Limb Axial Arterial Length Change During Locomotion, Melissa D. Young, Matthew C. Streicher, Richard J. Beck, Antonie J. Van Den Bogert, Azita Tajaddini, Brian L. Davis

Antonie J. van den Bogert

The effect of external forces on axial arterial wall mechanics has conventionally been regarded as secondary to hemodynamic influences. However, arteries are similar to muscles in terms of the manner in which they traverse joints, and their three-dimensional geometrical requirements for joint motion. This study considers axial arterial shortening and elongation due to motion of the lower extremity during gait, ascending stairs, and sitting-to-standing motion. Arterial length change was simulated by means of a graphics based anatomic and kinematic model of the lower extremity. This model estimated the axial shortening to be as much as 23% for the femoropopliteal arterial ...


The Biomechanical Role Of Scaffolds In Augmented Rotator Cuff Tendon Repairs, Amit Aurora, Jesse A. Mccarron, Antonie J. Van Den Bogert, Jorge E. Gatica, Joseph P. Iannotti, Kathleen A. Derwin Dec 2013

The Biomechanical Role Of Scaffolds In Augmented Rotator Cuff Tendon Repairs, Amit Aurora, Jesse A. Mccarron, Antonie J. Van Den Bogert, Jorge E. Gatica, Joseph P. Iannotti, Kathleen A. Derwin

Antonie J. van den Bogert

Background Scaffolds continue to be developed and used for rotator cuff repair augmentation; however, the appropriate scaffold material properties and/or surgical application techniques for achieving optimal biomechanical performance remains unknown. The objectives of the study were to simulate a previously validated spring-network model for clinically relevant scenarios to predict: (1) the manner in which changes to components of the repair influence the biomechanical performance of the repair and (2) the percent load carried by the scaffold augmentation component. Materials and methods The models were parametrically varied to simulate clinically relevant scenarios, namely, changes in tendon quality, altered surgical technique ...


An Analytical Model For Rotator Cuff Repairs, A. Aurora, Jorge E. Gatica, Antonie J. Van Den Bogert, J. A. Mccarron, Kathleen A. Derwin Dec 2013

An Analytical Model For Rotator Cuff Repairs, A. Aurora, Jorge E. Gatica, Antonie J. Van Den Bogert, J. A. Mccarron, Kathleen A. Derwin

Antonie J. van den Bogert

Background

Currently, natural and synthetic scaffolds are being explored as augmentation devices for rotator cuff repair. When used in this manner, these devices are believed to offer some degree of load sharing; however, no studies have quantified this effect. Furthermore, the manner in which loads on an augmented rotator cuff repair are distributed among the various components of the repair is not known, nor is the relative biomechanical importance of each component. The objectives of this study are to (1) develop quasi-static analytical models of simplified rotator cuff repairs, (2) validate the models, and (3) predict the degree of load ...


A Real-Time, 3-D Musculoskeletal Model For Dynamic Simulation Of Arm Movements, Edward K. Chadwick, Dimitra Blana, Antonie J. Van Den Bogert, Robert F. Kirsch Dec 2013

A Real-Time, 3-D Musculoskeletal Model For Dynamic Simulation Of Arm Movements, Edward K. Chadwick, Dimitra Blana, Antonie J. Van Den Bogert, Robert F. Kirsch

Antonie J. van den Bogert

Neuroprostheses can be used to restore movement of the upper limb in individuals with high-level spinal cord injury. Development and evaluation of command and control schemes for such devices typically require real-time, ldquopatient-in-the-looprdquo experimentation. A real-time, 3-D, musculoskeletal model of the upper limb has been developed for use in a simulation environment to allow such testing to be carried out noninvasively. The model provides real-time feedback of human arm dynamics that can be displayed to the user in a virtual reality environment. The model has a 3-DOF glenohumeral joint as well as elbow flexion/extension and pronation/supination and contains ...


Robotic Testing Of Proximal Tibio-Fibular Joint Kinematics For Measuring Instability Following Total Knee Arthroplasty, Wael K. Barsoum, Ho H. Lee, Trevor G. Murray, Robb Colbrunn, Alison K. Klika, S. Butler, Antonie J. Van Den Bogert Dec 2013

Robotic Testing Of Proximal Tibio-Fibular Joint Kinematics For Measuring Instability Following Total Knee Arthroplasty, Wael K. Barsoum, Ho H. Lee, Trevor G. Murray, Robb Colbrunn, Alison K. Klika, S. Butler, Antonie J. Van Den Bogert

Antonie J. van den Bogert

Pain secondary to instability in total knee arthroplasty (TKA) has been shown to be major cause of early failure. In this study, we focused on the effect of instability in TKA on the proximal tibio-fibular joint (PTFJ). We used a robotics model to compare the biomechanics of the PTFJ in the native knee, an appropriately balanced TKA, and an unbalanced TKA. The tibia (n = 5) was mounted to a six-degree-of-freedom force/torque sensor and the femur was moved by a robotic manipulator. Motion at the PTFJ was recorded with a high-resolution digital camera system. After establishing a neutral position, loading ...