Open Access. Powered by Scholars. Published by Universities.®

Biomedical Engineering and Bioengineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Biomedical Engineering and Bioengineering

Dynamic Balance Control During Treadmill Walking In Chronic Stroke Survivors, Eric Richard Walker Oct 2013

Dynamic Balance Control During Treadmill Walking In Chronic Stroke Survivors, Eric Richard Walker

Dissertations (1934 -)

Maintaining dynamic balance is an important component of walking function that is likely impaired in chronic stroke survivors, evidenced by an increased prevalence of falls. Dynamic balance control requires maintaining the center of mass (COM) within the base of support during movement. During walking, dynamic balance control is achieved largely by modifying foot placement to adjust the base of support. However, chronic stroke survivors have difficulty with both precision control of foot placement, as well as reduced control of COM movement. The objective of this dissertation was to characterize dynamic balance control strategies during walking in chronic stroke survivors. Additionally ...


Effect Of Tilt Sensor Versus Heel Loading On Neuroprosthesis Stimulation Reliability And Timing For Individuals Post-Stroke During Level And Non- Level Treadmill Walking, M. Barbara Silver-Thorn Oct 2013

Effect Of Tilt Sensor Versus Heel Loading On Neuroprosthesis Stimulation Reliability And Timing For Individuals Post-Stroke During Level And Non- Level Treadmill Walking, M. Barbara Silver-Thorn

Biomedical Engineering Faculty Research and Publications

Study background: Non-level walking may adversely affect stimulation of neuroprostheses as initial programming is performed during level walking. The objectives of this study were to assess stimulation reliability of tilt and heel sensor-based neuroprosthesis stimulation during level and non-level walking, examine stimulation initiation and termination timing during level and non-level walking, and determine whether heel or tilt sensor-based stimulation control is more robust for non-level ambulation. Methods: Eight post-stroke individuals with drop foot who were able to actively ambulate within the community were selected for participation. Each subject acclimated to the neuroprosthesis and walked on a treadmill randomly positioned in ...


Supraspinal Control Of Unilateral Locomotor Performance: An Fmri Study Using A Custom Pedaling Device, Brett Arand Oct 2013

Supraspinal Control Of Unilateral Locomotor Performance: An Fmri Study Using A Custom Pedaling Device, Brett Arand

Master's Theses (2009 -)

This study aimed to develop a novel unilateral pedaling device, validate its function, and use it in an fMRI study of bilateral vs. unilateral locomotor control. The new device is MRI compatible and allows for conventional coupled bilateral pedaling, along with decoupled unilateral pedaling. It was designed with an assistance mechanism to simulate the presence of the non-contributing leg while pedaling unilaterally. During coupled bilateral pedaling, the two legs work in unison: while one leg is extending in the downstroke, it provides support to lift the other leg back up as it is flexing in the upstroke. The device uses ...


Changes In Hemodynamic Responses In Chronic Stroke Survivors Do Not Affect Fmri Signal Detection In A Block Experimental Design, Nutta-On Promjunyakul, Brian D. Schmit, Sheila Schindler-Ivens Sep 2013

Changes In Hemodynamic Responses In Chronic Stroke Survivors Do Not Affect Fmri Signal Detection In A Block Experimental Design, Nutta-On Promjunyakul, Brian D. Schmit, Sheila Schindler-Ivens

Physical Therapy Faculty Research and Publications

The use of canonical functions to model BOLD-fMRI data in people post-stroke may lead to inaccurate descriptions of task-related brain activity. The purpose of this study was to determine whether the spatiotemporal profile of hemodynamic responses (HDRs) obtained from stroke survivors during an event-related experiment could be used to develop individualized HDR functions that would enhance BOLD-fMRI signal detection in block experiments. Our long term goal was to use this information to develop individualized HDR functions for stroke survivors that could be used to analyze brain activity associated with locomotor-like movements. We also aimed to examine the reproducibility of HDRs ...


White Matter Structural Connectivity Is Associated With Sensorimotor Function In Stroke Survivors, Benjamin Kalinosky, Sheila M. Schindler-Ivens, Brian D. Schmit Jan 2013

White Matter Structural Connectivity Is Associated With Sensorimotor Function In Stroke Survivors, Benjamin Kalinosky, Sheila M. Schindler-Ivens, Brian D. Schmit

Biomedical Engineering Faculty Research and Publications

Purpose

Diffusion tensor imaging (DTI) provides functionally relevant information about white matter structure. Local anatomical connectivity information combined with fractional anisotropy (FA) and mean diffusivity (MD) may predict functional outcomes in stroke survivors. Imaging methods for predicting functional outcomes in stroke survivors are not well established. This work uses DTI to objectively assess the effects of a stroke lesion on white matter structure and sensorimotor function.

Methods

A voxel-based approach is introduced to assess a stroke lesion's global impact on motor function. Anatomical T1-weighted and diffusion tensor images of the brain were acquired for nineteen subjects (10 post-stroke and ...